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Digression: Neural Networks
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A Simple Bi-level Problem

min
θ∈Rdu ,φ∈Rdl

fu(θ ,φ) subject to φ ∈ arg min
ϕ∈Rdl

fl(θ ,ϕ) (1)

⇛⇛⇛ fu, fl smooth, continuous in both θ ,φ

⇛⇛⇛ fl(θ , ·) is strongly convex in φ for all θ ⇒ singleton LL solution

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (2)
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A Simple Bi-level Problem

⇛⇛⇛ Singleton LL solution + No constraints

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (3)

ML applications

⇛⇛⇛ Hyperparameter optimization

fu(θ ,φ) = ∑
i∈[n]

ℓval(yi,Mφ (xi)), fl(θ ,φ) = ∑
j∈[m]

ℓ(yi,Mφ (xi))+∥θ ⊙φ∥2
2︸ ︷︷ ︸

⋆⋆

. (4)
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A Simple Bi-level Problem

⇛⇛⇛ Singleton LL solution + No constraints

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (5)

ML applications

⇛⇛⇛ Representation learning (for multi-task learning, meta-learning)

fu(θ ,φ) = ∑
i∈[n]

ℓ(yi,Mφ (Mθ (xi))), fl(θ ,φ) = ∑
j∈[m]

ℓ(yi,Mφ (Mθ (xi)))+ρ∥φ∥2
2︸ ︷︷ ︸

⋆⋆

. (6)
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A Simple Bi-level Problem

⇛⇛⇛ Singleton LL solution + No constraints

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (7)

ML applications

⇛⇛⇛ Model pruning / compression

fu(θ ,φ) = ∑
i∈[n]

ℓ(yi,Mθ⊙φ (xi)), fl(θ ,φ) = ∑
j∈[m]

ℓ(yi,Mθ⊙φ (xi))+ρ∥φ∥2
2︸ ︷︷ ︸

⋆⋆

. (8)
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A Simple Bi-level Problem

⇛⇛⇛ Singleton LL solution + No constraints

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (9)

ML applications

⇛⇛⇛ Data subset selection (condensation / compression / cleaning)⋆⋆ – HPO

⇛⇛⇛ Neural Architecture Search [Liu et al., 2019]⋆⋆ – HPO

⇛⇛⇛ Reinforcement Learning [Hong et al., 2020, 2023]

⇛⇛⇛ Personalized Federated Learning [Fallah et al., 2020]

⇛⇛⇛ Learning parametric loss function

⇛⇛⇛ Learning to optimize [Andrychowicz et al., 2016]
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Meta-algorithm

Alternating optimization

⇛⇛⇛ For certain number of iteration (until convergence)
⇛⇛⇛ Update the LL variable φ (using LL objective and current iterate of UL variable)
⇛⇛⇛ Update the UL variable θ (using UL objective and current iterate of LL variable)

θ 0 θ 1 θ k θ k+1 θ K
w/ θ 0,φ 1 w/ θ k,φ k+1

φ 0 φ 1 φ k φ k+1 φ K
w/ θ 0,φ 0 w/ θ k,φ k
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Meta-algorithm: Single loop

Alternating optimization

⇛⇛⇛ For certain number of iteration (until convergence)
⇛⇛⇛ Update the LL variable φ with a single descent step
⇛⇛⇛ Update the UL variable θ with a single descent step

θ 0 θ 1 θ k θ k+1 θ K
w/ θ 0,φ 1 w/ θ k,φ k+1

φ 0 φ 1 φ k φ k+1 φ K
1 step 1 step
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Meta-algorithm: Double loop

Alternating optimization

⇛⇛⇛ For certain number of iteration (until convergence)
⇛⇛⇛ Update the LL variable φ

⇛⇛⇛ For certain number of iterations take descent steps
⇛⇛⇛ Update the UL variable θ with a single descent step

θ 0 θ 1 θ k θ k+1 θ K
w/ θ 0,φ 1 w/ θ k,φ k+1

φ 0 φ 0
t φ 0

t+1 φ 1 φ k φ k
t φ k

t+1 φ k+1 φ K
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Single loop vs double loop

⇛⇛⇛ Best choice application dependent

⇛⇛⇛ Single loop more applicable for sequential learning problems (such as reinforcement
learning)

⇛⇛⇛ Double loop more communication efficient in distributed optimization

⇛⇛⇛ Single loop easier to optimize – less hyperparameters (for example, no need to
decide how many LL steps to take)

⇛⇛⇛ If properly tuned, double loop can have faster convergence
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LL Descent Step

Strongly convex LL + Singleton LL solution + No constraints

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (10)

φ
k+1← φ

k−β
khk

l (11)

⇛⇛⇛ hk
l = ∇φ fl(θ ,φ) (or a stochastic estimate)

⇛⇛⇛ A good candidate, but not the only option
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UL Descent Step

Strongly convex LL + Singleton LL solution + No constraints

min
θ∈Rdu

fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (12)

What is the gradient of F(θ) = fu(θ ,φ
⋆(θ))?

∇̃θ F(θ) =
d

dθ
F(θ) =

∂

∂θ︸︷︷︸
∇θ

fu(θ ,φ
⋆(θ))+

dφ ⋆(θ)⊤

dθ︸ ︷︷ ︸
IG∈Rdu×dl

· ∂

∂φ︸︷︷︸
∇φ

fu(θ ,φ
⋆(θ)) (13)

Implicit Gradient or IG:

⇛⇛⇛ Gradient of the LL solution w.r.t. the UL variable

⇛⇛⇛ Gradient flow from LL back to UL

⇛⇛⇛ Alternating GD ignores the second term involving the IG
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Implicit Gradient

Since φ ⋆(θ) is a LL solution, the stationarity condition gives us

∇φ fl(θ ,φ
⋆(θ)) = 0 (14)

Taking the derivative w.r.t. θ we have (by Implicit Function Theorem):

∇
2
θφ fl(θ ,φ

⋆(θ))+
dφ ⋆(θ)⊤

dθ
∇

2
φ fl(θ ,φ

⋆(θ))︸ ︷︷ ︸
Hessian H

= 0. (15)

Assuming the Hessian H is invertible at φ ⋆(θ),

dφ ⋆(θ)⊤

dθ
=−∇

2
θφ fl(θ ,φ

⋆(θ))·︸ ︷︷ ︸
du×dl

∇
2
φ fl(θ ,φ

⋆(θ))−1.︸ ︷︷ ︸
dl×dl

(16)
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Challenges with IG

dφ ⋆(θ)⊤

dθ
=−∇

2
θφ fl(θ ,φ

⋆(θ)) ·∇2
φ fl(θ ,φ

⋆(θ))−1. (17)

⇛⇛⇛ Needs Jacobian, involving a Hessian inverse and another second-order derivative!

⇛⇛⇛ Assumptions needed
⇛⇛⇛ LL unconstrained stationarity
⇛⇛⇛ LL unique / singleton solution φ ⋆(θ) (for any given θ )
⇛⇛⇛ LL Hessian at stationarity exists and is invertible
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Bi-level Approximation (BA) Algorithm

Algorithm 1 Bilevel Approximation Algorithm [Ghadimi and Wang, 2018]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// Solve LL (approx.) for current θ k

ϕ0← φ k

for t = 1,2, . . . ,T do
ϕ t+1← ϕ t −β t ∇φ fl(θ ,φ)

∣∣
θ=θ k,φ=ϕt

φ k+1← ϕT+1

// UL descent step with IG
θ k+1← θ k−αk ·

[
∇θ fu(θ ,φ)− ∇̄ fu(θ ,φ)

]∣∣
θ=θ k,φ=φ k+1

return θ K+1,φ K+1

∇̄ fu(θ ,φ) = ∇
2
θφ fl(θ ,φ) ·∇2

φ fl(θ ,φ)
−1︸ ︷︷ ︸

−IG

·∇φ fu(θ ,φ) (18)
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BA Algorithm

θ 0 θ k θ k+1 θ K

φ 0 φ k ≈ φ ⋆(θ k−1) φ k
t φ k

t+1 φ k+1 ≈ φ ⋆(θ k) φ K

BA

IG

⇛⇛⇛ Double loop

✓ Convergence guarantees (for strongly convex LL, smooth UL)

✗ Needs explicit Hessian inverse

✗ Needs (approx) LL solution in each UL iteration
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Stochastic variant: Bi-level Stochastic Approximation (BSA)

Algorithm 2 Bilevel Approximation Algorithm [Ghadimi and Wang, 2018]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// Solve LL (approx.) for current θ k

ϕ0← φ k

for t = 1,2, . . . ,T do

ϕ t+1← ϕ t −β t ∇φ fl(θ ,φ)
∣∣∣
θ=θ k ,φ=ϕt

φ k+1← ϕT+1

// UL descent step with IG

θ k+1← θ k−αk ·
[

∇θ fu(θ ,φ) − ∇
2
θφ fl(θ ,φ) · ∇

2
φ fl(θ ,φ)

−1 · ∇φ fu(θ ,φ)

]∣∣∣∣ θ=θ k ,

φ=φ k+1

return θ K+1,φ K+1

⇛⇛⇛ ∇φ fl , ∇θ fu , ∇
2
θφ fl , ∇φ fu – replace with stochastic estimates

⇛⇛⇛ ∇
2
φ fl(θ ,φ)

−1 – replace Hessian inverse with stochastic Neumann approximation⋆⋆
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Approximate Implicit Differentiation Bi-level Opt (AID-BiO)

Algorithm 3 Approx Implicit Differentiation Bi-level Optimization [Ji et al., 2021]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// Solve LL (approx.) for current θ k

ϕ0← φ k

for t = 1,2, . . . ,T do
ϕ t+1← ϕ t −β t ∇φ fl(θ ,φ)

∣∣
θ=θ k ,φ=ϕt

φ k+1← ϕT+1

// UL descent step with IG

θ k+1← θ k−αk ·
[

∇θ fu(θ ,φ)−∇2
θφ

fl(θ ,φ) · ∇
2
φ fl(θ ,φ)

−1 ·∇φ fu(θ ,φ)

]∣∣∣∣ θ=θ k ,

φ=φ k+1

return θ K+1,φ K+1

⇛⇛⇛ ∇
2
φ f−1

l ·∇φ fu – approx inverse Hessian-gradient product with Conjugate Gradient⋆⋆
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AID-BiO Algorithm

θ 0 θ k θ k+1 θ K

φ 0 φ k ≈ φ ⋆(θ k−1) φ k
t φ k

t+1 φ k+1 ≈ φ ⋆(θ k) φ K

BSA/AID-BiO

IG via CG/NA

⇛⇛⇛ Double loop

✓ Convergence guarantees (for strongly convex LL, smooth UL)

✗ Needs (approx) LL solution in each UL iteration
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Two-Timescale Stochastic Approximation (TTSA)

Algorithm 4 Two-Timescale Stoc Approx [Hong et al., 2020, 2023]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// Single LL descent step

φ k+1← φ k−β k ∇φ fl(θ ,φ)
∣∣∣
θ=θ k ,φ=φ k

// UL descent step with IG

θ k+1←PΘ

(
θ k−αk[ ∇θ fu(θ ,φ) − ∇

2
θφ fl(θ ,φ) · ∇

2
φ fl(θ ,φ)

−1 · ∇φ fu(θ ,φ)
]∣∣

θ=θ k ,
φ=φ k+1

)
return θ K+1,φ K+1

⇛⇛⇛ ∇φ fl , ∇θ fu , ∇
2
θφ fl , ∇φ fu – stochastic estimates

⇛⇛⇛ ∇
2
φ fl(θ ,φ)

−1 – Hessian inverse with stochastic Neumann approximation⋆⋆
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TTSA Algorithm

θ 0 θ 1
θ k θ k+1 θ K

∇θ fu(θ 0,φ 1) ∇θ fu(θ k,φ k+1)

φ 0 φ 1
φ k φ k+1 φ K

∇φ fl(θ 0,φ 0) ∇φ fl(θ k,φ k)

TTSA

IG/NA IG/NA

✓ Single loop – no need to solve LL at each UL iteration

✓ Convergence guarantees if αk≪ β k and αk/β k→ 0 as k→ ∞

⇛⇛⇛ LL optimizes faster than UL, thus, two-timescale

✓ Handles UL csts with projected SGD in the UL update: θ k+1←PΘ

(
θ k−αk ·hk

u
)

✗ Needs to use small αk, which slows the UL convergence
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Understanding LL updates [Chen et al., 2022]

•φ ⋆(θ k) • φ ⋆(θ k+1)

•φ k

• TTSA

•
STABLECT

• AID-BiO
• BSA

Main Idea

Leverage an estimate of φ ⋆(θ k+1)−φ ⋆(θ k) – the correction term (CT)
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Single-Timescale Stochastic Bi-level Optimization (STABLE)

Algorithm 5 Single-Timescale Stoc Bi-level Optimization [Chen et al., 2022]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// UL descent step with IG

θ k+1←PΘ

(
θ k−αk ·

[
∇θ fu(θ ,φ)−∇2

θφ
fl(θ ,φ) ·∇2

φ
fl(θ ,φ)−1 ·∇φ fu(θ ,φ)

]∣∣∣θ=θ k ,
φ=φ k

)
// Single LL descent step with correction term

φ k+1← φ k−β k∇φ fl(θ ,φ)
︷ ︸︸ ︷
−∇

2
φ fl(θ ,φ)

−1 ·∇2
θφ fl(θ ,φ)

⊤
∣∣∣θ=θ k ,

φ=φ k

· (θ k+1−θ
k)

return θ K+1,φ K+1
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Single-Timescale Stochastic Bi-level Optimization (STABLE)

Algorithm 6 Single-Timescale Stoc Bi-level Optimization [Chen et al., 2022]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// UL descent step with IG

θ k+1←PΘ

θ k−αk ·
[

∇θ fu(θ ,φ) − ∇
2
θφ fl(θ ,φ) · ∇

2
φ fl(θ ,φ)

−1 · ∇φ fu(θ ,φ)

]∣∣∣∣θ=θ k ,

φ=φ k


// Single LL descent step with correction term

φ k+1← φ k−β k ∇φ fl(θ ,φ)

︷ ︸︸ ︷
− ∇

2
φ fl(θ ,φ)

−1 · ∇
2
θφ fl(θ ,φ)

⊤
∣∣∣∣θ=θ k ,

φ=φ k

· (θ k+1−θ
k)

return θ K+1,φ K+1

⇛⇛⇛ ∇φ fl , ∇θ fu , ∇φ fu – stochastic estimates

⇛⇛⇛ ∇
2
φ ,φ
−1 – Hessian inverse with stoc Neumann approximation⋆⋆ & variance reduction

⇛⇛⇛ ∇
2
θφ fl – variance reduced stochastic estimate
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TTSA vs STABLE

θ 0 θ 1
θ k θ k+1 θ K

∇θ fu(θ 0,φ 1) ∇θ fu(θ k,φ k+1)

φ 0 φ 1
φ k φ k+1 φ K

∇φ fl(θ 0,φ 0) ∇φ fl(θ k,φ k)

TTSA

IG/NA IG/NA

θ 0 θ 1 θ k θ k+1 θ K
∇θ fu(θ 0,φ 1) ∇θ fu(θ k,φ k+1)

φ 0 φ 1
φ k φ k+1 φ K

∇φ fl(θ 0,φ 0) ∇φ fl(θ k,φ k)

STABLE

IG/NA+VR CT IG/NA+VR CT
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TTSA Algorithm

θ 0 θ 1
θ k θ k+1 θ K

∇θ fu(θ 0,φ 1) ∇θ fu(θ k,φ k+1)

φ 0 φ 1
φ k φ k+1 φ K

∇φ fl(θ 0,φ 0) ∇φ fl(θ k,φ k)

STABLE

IG/NA+VR CT IG/NA+VR CT

✓ Single loop

✓ Handles UL constraints via projected gradient descent

✓ Single timescale – αk,β k ∼ O(1/
√

K) for convergence

✗ More expensive LL update
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Empirical comparison [Chen et al., 2022]

Bi-level hyperparameter optimization

min
θ∈Rdu

∑
i∈[n]

ℓ(yi,Mφ⋆(θ)(xi)) s.t. φ
⋆(θ) = arg min

φ∈Rdl
∑

j∈[m]

ℓ(yi,Mφ (xi))+θ
⊤(φ ⊙φ)
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Other Modifications and Enhancements (incomplete)

Techniques

⇛⇛⇛ Leverage momentum acceleration for UL and LL descent steps for faster
convergence guarantees [Khanduri et al., 2021]

⇛⇛⇛ Avoid IG approximation completely by Hessian-free approaches [Sow et al., 2022a]

⇛⇛⇛ Variance Reduction
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Digression: Momentum

Vanilla gradient descent

For a function f (θ):

θ
k+1← θ

k−α
k ·∇θ f (θ k), where ∇θ f (θ k) = ∇θ f (θ)|

θ=θ k (19)

∇θ f (θ k) can also be a stochastic estimate of the gradient of f (θ) at θ k.

(S)GD with momentum

With momentum parameters ηk ∈ (0,1),∀k ∈ [K]

θ
k+1← θ

k−α
k ·hk, where hk← η

khk−1 +(1−η
k)∇θ f (θ k). (20)
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Enhancement: Bi-level Momentum

Bi-level momentum [Khanduri et al., 2021]

⇛⇛⇛ LL update with momentum with ηk
l ∈ (0,1)

h̃k
l ← (1−η

k
l )∇φ fl(θ

k,φ k)+η
k
l

(
h̃k−1

l +∇φ fl(θ
k,φ k)−∇φ fl(θ

k−1,φ k−1)
)

(21)

⇛⇛⇛ UL update with momentum with ηk
u ∈ (0,1)

h̃k
u← (1−η

k
u)∇̄ fu(θ

k,φ k)+η
k
u

(
h̃k−1

u + ∇̄ fu(θ
k,φ k)− ∇̄ fu(θ

k−1,φ k−1)
)

∇̄ fu(θ
k,φ k)≈

[
∇θ fu(θ ,φ)−∇

2
θφ fl(θ ,φ) ·∇2

φ fl(θ ,φ)
−1 ·∇φ fu(θ ,φ)

]∣∣
θ=θ k,
φ=φ k

(22)
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Details: Conjugate Gradient

Obtain inverse-Hessian vector product H−1v by solving the following quadratic program:

min
x∈Rd

1
2

x⊤Hx− v⊤x, H−d×d-Hessian matrix,v− a vector. (23)

Solve via Conjugate Gradient method [Nazareth, 2009].
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Details: Conjugate Gradient

Algorithm 7 Conjugate Gradient Algorithm
Input: Positive definite symmetric H ∈ Rd×d , vector v ∈ Rd

Input: Initial x0 ∈ Rd , precision ε > 0, max iters n
d0 = r0← v−Hx0
for i← 0,1, . . . ,n do

αi← (d⊤i ri)/(d⊤i Hdi ) // Hessian-vector product⋆⋆

xi+1← xi +αidi

ri+1← ri−αi Hdi

βi+1← (r⊤i+1ri+1)/(r⊤i ri)
di+1← ri+1 +βi+1di

if r⊤i+1ri+1 ≤ ε then
return xi

return xn+1
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Details: Neumann Series Approximation

Neumann series expansion:

H−1 =
∞

∑
n=0

[I−H]n (24)

Stochastic approximation for IG:

⇛⇛⇛ Sample p ∈ [0, tmax]

⇛⇛⇛ Compute C1 ∏
p
i=0[I−C2∇2

φ
fl(θ

k,φ k)] using p different stochastic estimates of ∇2
φ

fl

⇛⇛⇛ For appropriately set scalars C1,C2, this provides a biased but sufficiently
accurate (for convergence) estimate of the IG
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Non-IG based Solutions

Solutions that do not make use of the Implicit Gradient

⇛⇛⇛ Optimal value function based techniques

⇛⇛⇛ Gradient unrolling based techniques
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Optimal Value Function

min
θ∈Θ,φ∈Φ

fu(θ ,φ) subject to fl(θ ,φ)≤ ν(θ) = min
φ∈Φ

fl(θ ,φ) (25)

ν : Rdu → R is called the Optimal Value Function

⇛⇛⇛ No closed form available

⇛⇛⇛ Maybe non-convex, non-differentiable

⇛⇛⇛ May not be strictly feasible and regularity conditions may not hold
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Optimal Value Function

Smooth upper bound on the optimal value function

ν̃a(θ) = min
φ∈Φ

fl(θ ,φ)+
a1

2
∥φ∥2

2 +a2,a = {a1,a2},a1,a2 > 0. (26)

⇛⇛⇛ Smooth

⇛⇛⇛ strictly feasible

40/62 Sanjeeb Dash / Parikshit Ram – Algorithms and Analysis of Stochastic Bi-level Optimization Problems © 2023 IBM Corporation



Optimal Value Function

Now solve

min
θ∈Θ,φ∈Φ

fu(θ ,φ) subject to fl(θ ,φ)≤ ν̃a(θ) (27)

Penalty based single-level optimization (for a large enough ρ > 0)

min
θ∈Θ,φ∈Φ

fu(θ ,φ)+ρ ·max{0, fl(θ ,φ)− ν̃a(θ)} (28)

Sow et al. [2022b] solves the following using primal-dual methods

max
ρ≥0

min
θ∈Θ,φ∈Φ

fu(θ ,φ)+ρ · ( fl(θ ,φ)− ν̃a(θ)) (29)
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Gradient Unrolling

⇛⇛⇛ Double-loop setting

⇛⇛⇛ Access to the LL optimizer and the iterates φ k = ϕ0→ ϕ1→ ···ϕT ≈ φ ⋆(θ k)

⇛⇛⇛ Can we compute dφ⋆(θ k)/dθ via chain-rule?

Consider T = 1, with ϕ1← ϕ0−β∇φ fl(θ
k,ϕ0)

dϕ1

dθ
=

∂ϕ1

∂ϕ0 ·
dϕ0

dθ
+

∂ϕ1

∂θ
=−β∇

2
θφ fl(θ

k,ϕ0), (30)

assuming dϕ0/dθ = 0
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Gradient Unrolling

Consider T = 2, with ϕ2← ϕ1−β∇φ fl(θ
k,ϕ1)

dϕ2

dθ
=

∂ϕ2

∂ϕ1 ·
dϕ1

dθ
+

∂ϕ2

∂θ

=−β

[(
I−∇

2
φ fl(θ

k,ϕ1)
)
·∇2

θφ fl(θ
k,ϕ0)+∇

2
θφ fl(θ

k,ϕ1)
]
,

(31)

For any general t > 1

dϕ t

dθ︸︷︷︸
Zt∈Rdl×du

=
∂ϕ t

∂ϕ t−1︸ ︷︷ ︸
At∈Rdl×dl

· dϕ t−1

dθ︸ ︷︷ ︸
Zt−1

+
∂ϕ t

∂θ︸︷︷︸
Bt∈Rdl×du

(32)

Using the recursion Zt = AtZt−1 +Bt , we can compute ZT by “unrolling” the gradient.
This is known as the forward hypergradient [Franceschi et al., 2017].
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Gradient Unrolling

Things to note:
⇛⇛⇛ If ϕ t ← ϕ t−1−β∇φ fl(θ

k,ϕ t−1), then

At =
(

I−β∇
2
φ fl(θ

k,ϕ t−1)
)
, Bt =−β∇

2
θφ fl(θ

k,ϕ t−1)

⇛⇛⇛ Forward mode computation of dϕT/dθ :
⇛⇛⇛ Z0 = 0
⇛⇛⇛ for t = 1→ T

⇛⇛⇛ Compute At ,Bt , update Zt ← AtZt−1 +Bt

⇛⇛⇛ Return ZT

⇛⇛⇛ Backward mode computation useful in computing (dϕT/dθ)⊤v for some v ∈ Rdl

⇛⇛⇛ αT ← v, g← 0 ∈ Rdu

⇛⇛⇛ for t = (T −1)→ 1
⇛⇛⇛ Compute At+1,Bt+1, update g← g+B⊤t+1αt+1, αt ← A⊤t+1αt+1

⇛⇛⇛ Return g
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Gradient Unrolling

Compared to other methods:

✓ No Hessian-inverse required

✗ Relies on choice of LL optimizer and optimization path

✗ Memory and computation overhead increases with T
⇛⇛⇛ Truncated unrolling – ignore earlier LL steps
⇛⇛⇛ Select special LL optimizer⋆⋆

Forward vs backward:

✓ Forward does not require maintaining the iterates

✗ Forward requires matrix-matrix multiplications

✗ Backward requires whole sequence of iterates

✓ Backward can take advantage of efficient Hessian-vector products⋆⋆
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Setting and Goal: Unconstrained

Specific bi-level problem: No constraints + unique LL solution

min
θ∈Rdu

F(θ) = fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (33)

A point θ̄ ∈ Rdu is an ε-stationary point if

∥∇θ F(θ)|
θ=θ̄
∥2

2 ≤ ε (deterministic)

E
[
∥∇θ F(θ)|

θ=θ̄
∥2

2

]
≤ ε (stochastic)

(34)

Total number of (stochastic) gradient estimates S( fu,ε),S( fl,ε) of fu, fl resp evaluated
to reach a ε-stationary solution is called the sample complexity.

Example

If E∥∇θ F(θ̄)∥2
2 ≤ O(K−r) for K iterations and r ∈ (0,1), then S( fu,ε)∼ O(1/ε1/r)
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Setting and Goal: UL constraints

Specific bi-level problem: UL constraints + unique LL solution

min
θ∈Θ⊂Rdu

F(θ) = fu(θ ,φ
⋆(θ)) subject to φ

⋆(θ) = arg min
φ∈Rdl

fl(θ ,φ) (35)

In unconstrained case, we need ∇θ F(θ)|θ=θ̄ to be small.
In the constrained case, the condition is more general:〈

∇θ F(θ)|
θ=θ̄

,θ − θ̄
〉
≥ 0,∀θ ∈Θ. (36)

Essentially, moving from the solution increases the objective value.
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Setting and Goal: UL constraints

Moreau Envelop

For a fixed ρ > 0, the Moreau envelop and the proximal map are defined as

M1/ρ(ϑ) = min
θ∈Θ

{F(θ)+(ρ/2)∥θ −ϑ∥2}, θ̂(ϑ) = argmin
θ∈Θ

{F(θ)+(ρ/2)∥θ −ϑ∥2}
(37)

For an ε > 0, a point θ̄ ∈ Rdu is an ε-nearly stationary point if θ̄ is an approximate
fixed point of {θ̂ − I}(·)

E
[∥∥θ̂(θ̄)− θ̄

∥∥2
2

]
≤ ε/ρ

2 (stochastic) (38)
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Two-Timescale Stochastic Approximation (TTSA)

Algorithm 8 Two-Timescale Stoc Approx [Hong et al., 2020, 2023]
Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// Single LL descent step

φ k+1← φ k−β k ∇φ fl(θ ,φ)
∣∣∣
θ=θ k ,φ=φ k

// UL descent step with IG

θ k+1←PΘ(θ
k−αk[ ∇θ fu(θ ,φ) − ∇

2
θφ fl(θ ,φ) · ∇

2
φ fl(θ ,φ)

−1 · ∇φ fu(θ ,φ)︸ ︷︷ ︸
=∇̄ fu(θ ,φ)

]|
θ=θ k ,

φ=φ k+1

)

return θ K+1,φ K+1

⇛⇛⇛ ∇φ fl , ∇θ fu , ∇
2
θφ fl , ∇φ fu – stochastic estimates

⇛⇛⇛ ∇
2
φ fl(θ ,φ)

−1 – Hessian inverse with stochastic Neumann approximation⋆⋆
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TTSA Analysis: Assumptions

The UL objective fu(θ ,φ) and F(θ) = fu(θ ,φ
⋆(θ)) satisfy the following:

⇛⇛⇛ For any θ ∈ Rdu , ∇θ fu(θ , ·) and ∇φ fu(θ , ·) are Lipschitz continuous w.r.t. φ ∈ Rdl

⇛⇛⇛ For any φ ∈ Rdl , ∇φ fu(·,φ) is Lipschitz continuous w.r.t. θ ∈Θ

⇛⇛⇛ For any θ ∈Θ,φ ∈ Rdl , ∥∇φ fu(θ ,φ)∥ is bounded
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TTSA Analysis: Assumptions

The LL objective fl(θ ,φ) satisfy the following

⇛⇛⇛ For any θ ∈Θ,φ ∈ Rdl , fl(θ ,φ) is twice continuously differentiable in (θ ,φ)

⇛⇛⇛ For any θ ∈Θ, ∇φ fl(θ , ·) is Lipschitz continuous w.r.t. φ ∈ Rdl

⇛⇛⇛ For any θ ∈Θ, fl(θ , ·) is strongly convex in φ

⇛⇛⇛ For any θ ∈Θ, ∇2
θφ

fl(θ , ·),∇2
φ

fl(θ , ·) is Lipschitz continuous w.r.t. φ ∈ Rdl

⇛⇛⇛ For any φ ∈ Rdl , ∇2
θφ

fl(·,φ),∇2
φ

fl(·,φ) is Lipschitz continuous w.r.t. θ ∈Θ

⇛⇛⇛ For any θ ∈Θ,φ ∈ Rdl , ∥∇2
θφ

fl(θ ,φ)∥ is bounded
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TTSA Analysis: Assumptions

Algorithm 9 Two-Timescale Stoc Approx [Hong et al., 2020, 2023]
Input: Initialization θ 0 ,φ0 , initial learning rates α0 ,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

// Single LL descent step

φ k+1 ← φ k −β k ∇φ fl (θ ,φ)
∣∣∣∣
θ=θk ,φ=φk

// UL descent step with IG

θ k+1 ←PΘ

θ k −αk
[

∇θ fu(θ ,φ) − ∇
2
θφ

fl (θ ,φ) · ∇
2
φ fl (θ ,φ)

−1 · ∇φ fu(θ ,φ)
]∣∣∣∣ θ=θk ,

φ=φk+1


return θ K+1 ,φK+1

The stochastic estimates satisfy the following:

⇛⇛⇛ The stochastic estimates of ∇φ fl are unbiased with bounded variance

⇛⇛⇛ The stochastic estimates of ∇̄ fu(θ ,φ) are biased with bounded variance, and the
bias nonincreasing with the number of iterations k
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TTSA Analysis: First set of Lemmas

⇛⇛⇛ ∥∇̄θ fu(θ ,φ)−∇θ F(θ)∥ ≤ L∥φ ⋆(θ)−φ∥
⇛⇛⇛ ∥φ ⋆(θ1)−φ ⋆(θ2)∥ ≤ Lφ∥θ1−θ2∥
⇛⇛⇛ ∥∇θ F(θ1)−∇θ F(θ2)∥ ≤ Lu∥θ1−θ2∥
This allows us to bound the difference between the inaccurate and the exact implicit
gradient.
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TTSA Analysis: Tracking errors

The following are terms we need to track in each iteration

⇛⇛⇛ UL optimality gap: ∆k
θ
= E[∥θ k−θ ⋆∥]

⇛⇛⇛ LL optimality gap: ∆k
φ
= E[∥φ k−φ ⋆(θ k−1)∥]

⇛⇛⇛ Tracks how inaccurate the LL solution is for current θ k−1

⇛⇛⇛ Helps track the error introduced by the IG computed with φ k instead of φ ⋆(θ k−1)

⇛⇛⇛ UL constraint proximal gap ∆̃k
θ
= E[∥θ̂(θ k)−θ k ∥]

⇛⇛⇛ θ̂(θ) = argminϑ∈Θ{F(ϑ)+(ρ/2)∥θ −ϑ∥2}
⇛⇛⇛ Tracks distance from fixed point of {θ̂ − I}(·)
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TTSA Analysis: Strongly convex F(θ)

Strong convexity of UL F(θ) = fu(θ ,φ
⋆(θ))

F(θ)≥ F(θ ′)+ ⟨∇θ F(θ),θ −θ
′⟩+ cF∥θ −θ

′∥2
2,∀θ ,θ ′ ∈Θ,cF > 0 (39)

Coupling equations:

∆
k+1
φ
≤

k

∏
j=0

(1− c1β
j)∆0

φ + c2β
k (40)

∆
k+1
θ
≤

k

∏
j=0

(1−d1α
k)∆0

θ +d2α
k +d3

k

∑
j=0

α
j

k

∏
i= j+1

(1−d1α
k)∆k+1

φ
(41)
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TTSA Analysis: Strongly convex F(θ)

Coupling equations:

∆
k+1
φ
≤

k

∏
j=0

(1− c1β
j)∆0

φ + c2β
k (42)

∆
k+1
θ
≤

k

∏
j=0

(1−d1α
k)∆0

θ +d2α
k +d3

k

∑
j=0

α
j

k

∏
i= j+1

(1−d1α
k)∆k+1

φ
(43)

Considering the dominating terms above, with β j ∼ Õ((α j)2/3)

∆
k+1
φ
∼ Õ(β k)∼ Õ((αk)2/3) (44)

k

∑
j=0

α
j

k

∏
i= j+1

(1−d1α
k)∆k+1

φ
=

k

∑
j=0

Õ((α j)5/3)
k

∏
i= j+1

(1−d1α
k)∼ Õ((αk)2/3) (45)
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TTSA Analysis: Strongly convex F(θ)

Considering the dominating terms, with β j ∼ Õ((α j)2/3)

∆
k+1
φ
∼ Õ((αk)2/3) (46)

∆
k+1
θ
∼ Õ((αk)2/3) (47)

Setting αk ∼ O(1/k) and β k ∼ O(1/k2/3), we can establish that the optimality gap

∆
k+1
φ
∼ Õ(k−2/3) ∆

k+1
θ
∼ Õ(k−2/3) (48)

With K iterations of TTSA, we converge to a Õ(K−2/3)-stationary point, with a sample
complexity of Õ(1/ε3/2) for both the UL and LL objectives.
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TTSA Analysis: Weakly convex F(θ)

Weak convexity of UL F(θ) = fu(θ ,φ
⋆(θ))

F(θ)≥ F(θ ′)+ ⟨∇θ F(θ),θ −θ
′⟩+ cF∥θ −θ

′∥2
2,∀θ ,θ ′ ∈Θ, (49)

where the modulus of convexity, cF , might be negative.
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TTSA Analysis: Weakly convex F(θ)

Using a different set of recursive coupling equations, and a more involved analysis, we
can establish the following with αk ∼ O(K−3/5) and β k ∼ O(K−2/5) for all k ∈ [K].

1
K

K

∑
k=1

∆
k
φ ≤ Õ(K−2/5) (50)

1
K

K

∑
k=1
∥θ k−θ

k−1∥2 ≤ Õ(K−6/5) (51)

1
K

K

∑
k=0

∆̃
k
θ ≤ Õ(K−2/5), (52)

These can be used to show that TTSA with K iterations converges to a Õ(K−2/5)-nearly
stationary point, giving us a sample complexity of Õ(1/ε5/2).
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Other results and comparison

Algorithm Loop UL cst S( fu,ε) S( fl,ε)

BSA [Ghadimi and Wang, 2018] Double ✗ O(1/ε2) O(1/ε3)

TTSA [Hong et al., 2023] Single ✓ O(1/ε5/2) O(1/ε5/2)
STABLE [Chen et al., 2022] Single ✓ O(1/ε2) O(1/ε2)
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