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A Commom Problem: MILP

Mixed Integer Linear Program or MILP

min
θ

c⊤θ (1)

subject to Aθ ≤ b, (2)

Terminology

⇛⇛⇛ D integer variables, d continuous variables

⇛⇛⇛ c – (D+d) objective coefficients

⇛⇛⇛ A – constraint coefficient matrix for p constraints

⇛⇛⇛ b – p constraint thresholds
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Exact Solver: Branch and Bound

Algorithm 1 Branch-and-bound algorithm (BnB) for MILP P
Initialize: Set of open leaves S←{P} // run preprocessing routines

Initialize: UB U ←+∞, LB L←−∞ respectively
while S ̸= /0 and U > L do

Select open leaf M from S // node selection routines

if M is an integral node then
Compute obj l̂ in M, update U ←min{U, l̂}, L←min{L, l̂}, and continue

Relax M & solve to get node LB l̃ // run primal heuristics or add cuts here

if l̃ >U then
continue // can prune this node

L←min{L, l̃}
if solution integral then

U ←min{U, l̃} and continue

// variable selection routines

Select fractional variable j ∈ [D], split, and push child problems M1 and M2 into S
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Configuring a Branch-and-Bound Solver

Decisions to make:

⇛⇛⇛ Which open leaf to consider next?

⇛⇛⇛ Which fractional variable to split on?

⇛⇛⇛ Whether and which primal heuristics to run?

⇛⇛⇛ Whether and which cuts to add?

⇛⇛⇛ Whether and which preprocessing routines to run?

⇛⇛⇛ . . .

Decision frequency:

⇛⇛⇛ Once initially to globally set solver configuration – a single “decision”

⇛⇛⇛ Adaptively, during the execution at each point that needs a choice – a “policy” to
make a sequence of decisions
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Configuring a Branch-and-Bound Solver

Quantifying the quality of a decision or policy – the (sequence of) decisions

⇛⇛⇛ Time to solve – that is, time to U = L

⇛⇛⇛ Branch-and-bound tree size
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Configuring a Branch-and-Bound Solver

What has been automated with machine learning?

⇛⇛⇛ Node selection

⇛⇛⇛ Variable selection

⇛⇛⇛ Cutting planes selection

⇛⇛⇛ Primal heuristic selection

⇛⇛⇛ Formulation selection

⇛⇛⇛ Neighborhood search heuristics

⇛⇛⇛ Diving heuristics
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Configuring Branch-and-bound Solvers
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Configuring Branch-and-bound Solvers

⇛⇛⇛ Set of problems {Pi, i ∈ [n]}
⇛⇛⇛ Solver configuration parameters φ

⇛⇛⇛ Solution quality metric S(Pi,φ) by solving problem Pi with a BnB solver configured
with φ

min
φ

∑
i∈[n]

S(Pi,φ) (3)
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Configuring Branch-and-bound Solvers

min
φ

∑
i∈[n]

S(Pi,φ) (4)

Solution: SMBO – sequential model based optimization / derivative-free optimization /
global optimization / kriging / Bayesian optimization
Implications

⇛⇛⇛ If φ̄ is a good configuration for all Pi, i ∈ [n] (on average), it would be good for a new
problem, provided . . .

⇛⇛⇛ the set {Pi, i ∈ [n]} is a diverse set, but . . .

⇛⇛⇛ the score S(·, ·) needs to be calibrated properly so that we don’t end up optimizing
only for the problems with scores in the higher end
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Configuring Solvers with a Model using Problem Features

Extension. Utilize features of the MILP problem
Given features gi for a problem Pi,

⇛⇛⇛ learn a ML model M that predicts the score S(Pi,φ) – that is M(gi,φ)≈ S(Pi,φ), and

⇛⇛⇛ for any problem Pj with features g j, pick solver configuration by minimizing the
predicted score M(g j,φ) over φ (over the space of valid configurations):

min
M ∑

i∈[n]
S(Pi,φi) subject to ∀i ∈ [n], φi ∈ argmin

ϕ
M(gi,ϕ) (5)

Solution. Extended version of SMBO
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Limitations

⇛⇛⇛ Single solver conf for all problems seems limiting
⇛⇛⇛ Handled to some extent by using problem features – adapting solver conf to

problem

⇛⇛⇛ SMBO requires multiple evaluations of S(P,φ) for different problem P and solver
confs φ

⇛⇛⇛ Each eval requires a MILP solution
⇛⇛⇛ Might be computationally infeasible since we might need to use a lot of problems
{Pi, i ∈ [n]} and obtain evals for many solver configurations φ to learn a good
scorer model M.
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Guiding Solvers with a Policy

Problem

Features

Configurator
ML

Solver conf

Problem

Prob Feat ML

Next action

StateState feat

Action

space
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Policy: Imitation Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Imitation Learning

The ML model M corresponds to a “policy” – a model that
makes a sequence of decisions – that learns to mimic an
expert policy.

Why might this be useful?

⇛⇛⇛ Do not have access to expert policy at execution

⇛⇛⇛ Expert policy computationally expensive to constantly
invoke during execution – for example, Strong Branching
is expensive to invoke at each variable selection.
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Policy: Imitation Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Imitation Learning

The ML model M corresponds to a “policy” – a model that
makes a sequence of decisions – that learns to mimic an
expert policy.

Given a problem Pi (with features gi) solved by an expert,

⇛⇛⇛ We have a sequence of state-action pairs {(st ,at)}t∈[Ti]

from the execution

⇛⇛⇛ We learn M to mimic the actions taken by the expert in
any state

min
M ∑

i∈[n]
∑

t∈[Ti]

L
(

at ,︸︷︷︸
expert action

M(gi,st)︸ ︷︷ ︸
action by ML

)
(6)
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Policy: Imitation Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Various MILP benchmarks already provide data for this form
of learning.
Opportunities for innovation

⇛⇛⇛ How to create problem features?

⇛⇛⇛ How to create features for states and action spaces?

⇛⇛⇛ How to model the policy M?
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Policy: Reinforcement Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Reinforcement Learning

The ML model M corresponds to a “policy” – a model that
makes a sequence of decisions – that learns to maximize
some reward.

Given a problem Pi (with features gi),

⇛⇛⇛ Rollout policy M to solve Pi

⇛⇛⇛ Obtain a sequence of state/action/reward tuples
{(st ,at ,rt ,st+1), t ∈ [Ti]}

⇛⇛⇛ We learn M to maximize the rewards from the actions

min
M ∑

i∈[n]
∑

t∈[Ti]

wt︸︷︷︸
state weight

· rt︸︷︷︸
reward at state t

(7)
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Policy: Reinforcement Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

The data for this kind of learning needs to be generated on
the fly – we will have to (partially or fully) solve MILPs for
each policy rollout.
Additional opportunities for innovation

⇛⇛⇛ How to design a useful reward mechanism?

⇛⇛⇛ How to model intermediate rewards in a MILP solution
path?

⇛⇛⇛ How to learn in a “sample efficient” manner – that is, not
have to solve a lot of MILPs?
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Existing Literature: Leveraging ML in MILP

Paper Decision ML Technique+Model Data

He et al. [2014] Node selection Imitation Learning node (4); branching (4-5);
& pruning w/ policy network tree-specific (5);

Khalil et al. [2016]‡ Branching var Learning to rank static problem (18);
w/ linear model dynamic node (54);
(Imitation Learning) SB scores as targets;

Khalil et al. [2017] Heuristics Linear model global (4); depth (2);
which & if per-heuristic node LP (8); frac-score (35);

Balcan et al. [2018] Branching var Linear model Diff var selection scores

⇛⇛⇛ ‡ Learning and deployment can be done on-the-fly
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Existing Literature: Leveraging ML in MILP

Paper Decision ML Technique+Model Data

Fischetti et al. [2019] MILP resolution Classification node (4); node LP (11);
w/ random forests tree (6); global bounds (5);

Tang et al. [2019]† Cutting plane Reinforcement Learning current set of csts;
w/ policy network current sol of LP relaxation
(attention+LSTM) set of Gomory’s cuts

Gasse et al. [2019] Branching var Imitation Learning MILP→ var-cst BP graph;
w/ GNN based var feat; edge feat; cst feat
problem feat SB choice as targets

Gupta et al. [2020] Branching var Imitation Learning graph feat [Gasse et al., 2019]
w/ hybrid GNN+MLP per-node feat [Khalil et al., 2016]

SB choice as targets

⇛⇛⇛ † For IP only
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He et al. [2014]

Features

⇛⇛⇛ Node features: Node LB, estimated objective, depth, whether it is child/sibling of last
selected node

⇛⇛⇛ Branching features: For branching var leading to current node, pseudocost, (root LP
sol val - current node LP sol val), (val - current bound)

⇛⇛⇛ Tree features: global LB, global UB, integrality gap, num sols found, if U−L = ∞

Performance
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Khalil et al. [2016] Features
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Khalil et al. [2016] Performance
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Khalil et al. [2017]
Features

Performance
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Fischetti et al. [2019] Features
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Fischetti et al. [2019] Performance
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Gasse et al. [2019] Features

Bi-partite Graph & Graph-Convolutional NN
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Gasse et al. [2019] Performance
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AAAI’21 tutorial on Recent Advances in Integrating Machine Learning and Combinatorial
Optimization https://sites.google.com/view/ml-co-aaai-21/

SCIP based toolkit for Research on ML4CO.
https://doc.ecole.ai/master/index.html
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Outline

1 ML for Combinatorial Optimization

2 ML for Continuous Optimization
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Learning to optimize with gradients

Problem:
min
θ∈Rd

f (θ) (8)

Gradient descent:
θ

k+1← θ
k−α

k
∇θ f (θ k) (9)

Optimization with a ML model Mφ parameterized with φ [Andrychowicz et al., 2016]:

θ
k+1← θ

k +Mφ

(
∇θ f (θ k)

)
(10)
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Meta-optimization problem

For optimization objective f with optimizee variables θ f and a optimization horizon K,
meta-objective with respect to the optimizer variables φ :

L (φ) = E f
[

f
(
θ

K
f
)]

(11)

Generalization:

L (φ) = E f

[
K

∑
k=1

wk f
(

θ
k
f

)]
(12)
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A simple recurrent neural network

RNN are neural-networks used for learning with sequences (θ1,y1),(θ2,y2), . . . where
we want the learner to take into account the fact that the data is sequential in nature.

Classical Elman network with input θt−1 & hidden-layer “history” vector ht :

ht = σh (Whθt−1 +Uhht−1 +bh) (13)

yt = σy (Wyht +by) , (14)

where φ = {Wh,Uh,bh,Wy,by} and σh and σy are the activation functions.

In practice, Long Short Term Memory (LSTM) networks [Hochreiter and Schmidhuber,
1997] and Gated Recurrent Unit (GRU) networks [Cho et al., 2014] are the RNN-du-jour.
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Recurrent neural network as optimizer [Andrychowicz et al., 2016]

gk+1,hk+1←Mφ

(
∇θ f (θ k),hk

)
, (15)

θ
k+1← θ

k +gk+1 (16)
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Training the RNN

Input: Distribution of objective functions F
Input: Learning rate β , optimization horizon K, trajectory weights wk,k ∈ [K]
Input: Initialization of the optimizer variables φ

while not converged do
Sample f ∼ F with optimizee variables θ f

Initialize θ 0
f randomly, h0← 0

Unroll K steps with RNN Mφ (k = 1, . . . ,K): // inner optimization

gk,hk ←Mφ

(
∇θ f f (θ k−1

f ),hk−1
)
, θ

k
f ← θ

k−1
f +gk (17)

Update the RNN parameters φ : // RNN-optimization

∇φ L ← ∂

∂φ

K

∑
k=1

wk f (θ k
f ), φ ← φ −β∇φ L (18)

return φ

Note. Need second-order derivative of f wrt θ f or assume ∂∇θ f f/∂φ = 0
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Details: RNN Architecture

Coordinate-wise RNN – allows θ f to have different dimensionalities

⇛⇛⇛ RNN with 1-dimensional input

⇛⇛⇛ Each dimension in θ f shares RNN weights,

⇛⇛⇛ But has its own (scalar) history hk ∈ hk

⇛⇛⇛ Andrychowicz et al. [2016] say “. . . has the nice effect of making the optimizer
invariant to the order of the variables (. . . ) since the same update rule is used
independently for each coordinate . . . ”
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Details: Distribution of Objectives

Wichrowska et al. [2017, Section 4.1] suggest the following distribution:

⇛⇛⇛ 2-dimensional problems from literature (Goldstein, Hartmann, Rosenbrock, Branin)

⇛⇛⇛ Well-behaved convex problems (quadratic bowls, logistic regression on linearly
separable data)

⇛⇛⇛ Objectives with slow convergence
⇛⇛⇛ “many dimensional oscillating valley whose global minimum lies at ∞”,
⇛⇛⇛ “problems with a loss consisting of a very strong coupling term between

variables in a sequence”,
⇛⇛⇛ objective “only depends on the minimum and maximum valued variables, so the

gradients are extremely sparse and (. . . ) has discontinuous gradients”
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Modification: Weighing the Optimization Trajectory

L (φ) = E f

[
K

∑
k=1

wk f (θ k
f )

]
(19)

Different choices of wk:

⇛⇛⇛ wk = I[k = K]→→→ focus on final solution [Lv et al., 2017]

⇛⇛⇛ wk = 1 (or 1/K)→→→ focus on full trajectory [Andrychowicz et al., 2016]

⇛⇛⇛ wk = k→→→ more focus on later steps; but some on earlier steps too [Ruan et al., 2020]
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Modification: Transforming the RNN Training Objective

Original meta-objective:

L (φ) = E f

[
K

∑
k=1

wk f (θ k
f )

]
(20)

Assuming (or translating) minθ f f (θ f ) = 0∀ f , for some ε > 0, Wichrowska et al. [2017]
instead consider:

L (φ) = E f

[
K

∑
k=1

wk log
(

f (θ k
f )+ ε

)]
(21)

to better encourage exact convergence to minima.
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Modification: Generating Harder Functions to Train on

Transformation to f for better RNN-training [Lv et al., 2017, Wichrowska et al., 2017]:

⇛⇛⇛ Simulate problems with sparse gradients by setting large fraction of ∇θ f to 0.

⇛⇛⇛ Simulate different scaling across optimizee variables with a linear (randomized)
transformation of the variables.

⇛⇛⇛ Simulate different steepness profiles by applying a monotonic transformation to the
objectives

⇛⇛⇛ Simulate complex objectives with diverse parts which sums the objective values and
concatenates the variables from a diverse set of objectives

f (θ f ) = f1(θ f1)+ f2(θ f2)+ . . .
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Modification: Additional RNN Inputs

Instead of the gradient ∇θ as the RNN input, consider versions of [Lv et al., 2017,
Wichrowska et al., 2017]:

⇛⇛⇛ Momentum terms mk← η1mk−1 +(1−η1)∇θ f f (θ k
f )

⇛⇛⇛ Relative gradient magnitudes vk← η2vk−1 +(1−η2)
(

∇θ f f (θ k
f )
)2

, where(
∇θ f f (θ k

f )
)2

is the element-wise square of ∇θ f f (θ k
f )

gk+1,hk+1←Mφ (∇θ f f (θ k
f ),m

k,vk,hk) (22)
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Recent Results [Metz et al., 2022]

Best cases

Worst cases
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Recent Results [Metz et al., 2022]

44/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Learning to Optimize with Zeroth-order Oracle [Ruan et al., 2020]

Learned optimizer with gradients:

θ
k+1
f ← θ

k
f +Mφ

(
∇θ f f (θ k

f )
)

(23)

Instead consider zeroth-order gradient estimates [Liu et al., 2018] with n random
Gaussian directions ui ∈ Rd , i = 1, . . . ,n, and a smoothing parameter µ > 0:

∇̂θ f f (θ k
f ) =

1
µn

n

∑
i=1

ui

(
f (θ k

f +µui)− f (θ k
f )
)
. (24)

Learned optimizer with gradient estimates:

θ
k+1
f ← θ

k
f +Mφ

(
∇̂θ f f (θ k

f )
)

(25)

We can also “optimize” for the random directions ui by modifying the diagonal of the
covariance matrix of the Gaussian.
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Learning to Optimize with Function Values [Chen et al., 2017]

Learned optimizer for function values:

θ
k+1
f ←Mφ

(
θ

k
f , f (θ k

f )
)

(26)

⇛⇛⇛ Useful for black-box optimization (like in hyperparameter optimization),

⇛⇛⇛ But RNN training requires first-order derivative of f w.r.t. θ f

⇛⇛⇛ Cannot use coordinate-wise RNN, needing a RNN per optimizee variable – no
parameter sharing between variables in θ f

⇛⇛⇛ For cheap f , might be better to use L2O with (zeroth-order) gradient estimates

⇛⇛⇛ Open question: weight sharing RNN that does not use gradient estimates
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Resources

⇛⇛⇛ Survey – Learning to Optimize: A Primer and A Benchmark [Chen et al., 2022]

⇛⇛⇛ Invited talk by Jascha Sohl-Dickstein (Google) at ICLR 2023:
⇛⇛⇛ Learned optimizers: why they’re the future, why they’re hard, and what they

can do now
⇛⇛⇛ https://iclr.cc/virtual/2023/invited-talk/14236
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