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ML for Combinatorial Optimization
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A Commom Problem: MILP

Mixed Integer Linear Program or MILP

meincTG (1)

subject to A0 < b, (2)

Terminology

= D integer variables, d continuous variables

= c¢— (D+d) objective coefficients

= A — constraint coefficient matrix for p constraints
= b — p constraint thresholds
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Exact Solver: Branch and Bound

5/49

Algorithm 1 Branch-and-bound algorithm (BnB) for MILP P

Initialize: Set of open leaves S + {P}

Initialize: UB U < +oo, LB L <— —co respectively
while S #0 andU > L do

Select open leaf M from S // node selection routines
if M is an integral node then

| Compute obj /in M, update U «+— min{U, [}, L - min{L,[}, and continue

// run preprocessing routines

Relax M & solve to get node LB [ // run primal heuristics or add cuts here
if /> U then
L continue // can prune this node

L+ min{L,[}
if solution integral then
| U <« min{U,I} and continue
// variable selection routines
| Select fractional variable j € [D], split, and push child problems M; and M into S
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Configuring a Branch-and-Bound Solver
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Decisions to make:

= Which open leaf to consider next?

= Which fractional variable to split on?

= Whether and which primal heuristics to run?

= Whether and which cuts to add?

= Whether and which preprocessing routines to run?

> ...

Decision frequency:

= Once initially to globally set solver configuration — a single “decision”

= Adaptively, during the execution at each point that needs a choice — a “policy” to
make a sequence of decisions
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Configuring a Branch-and-Bound Solver

Quantifying the quality of a decision or policy — the (sequence of) decisions
= Time to solve — that is, timeto U = L

= Branch-and-bound tree size
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Configuring a Branch-and-Bound Solver

What has been automated with machine learning?
Node selection

Variable selection

Cutting planes selection

Primal heuristic selection

Formulation selection

Neighborhood search heuristics

S L A 2

Diving heuristics
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Configuring Branch-and-bound Solvers
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Al products / TLOG CPLEX Optimization Studio | 12.8.0.0 /

Al products 110G CPLEX Optimization Studio / 128.0.0 | All products f ILOG CPLEX Optimization Studio / 12.8.0.0 /

MIP strategies MIP cuts

Last Updated: 2021-03-08 Last Updated: 2021.03-08.

MIP variable se

Here are links to parameters controlin cuts.
Here are links to parameters controlling MIP strategies.

These parameters set limit on cut generaton,
algorithm for nitial MIP relaxation

lection strategy

Meaning
Branch on variable with minimur infeasibility

‘Automatic: et CPLEX choose variable to branch on; default
Branch on variable with maximum infeasibity

Branch based on pseudo costs.

Strong branching

[ —— Valoe Symbol
Benders state
=4 cut factor row-multiplier limit 1 (CPX_VARSEL_MININFEAS
MIP subprobiem agorithm peotstims
o CPX_VARSEL_DEFAULT
MIP ariabe selecton stratey e o cuting e psses
X cox_yaRseL_wwianreas
[ e prameters ool pece e of
e QucrcPttops et 2 cPX_ARSEL_pseun0
MIP branching irecton
Jr—— s cPx_vARSEL_STRONG
backtracking olerance i
s crx_vaRseL
MIP dive strategy MIP gisjunctive cuts switch
HIP heursic feaueney P e s s All products | TLOG CPLEX Optimization Studio /

local branching heuristic MIP flow path cut switeh

MIP Gomry fractions et switch
MIP priority order switch ”

imit for generating Gomory ractonal cuts

MIP Gomo ry fract

MIP node selection strategy
MIP GUB cuts switch

node presolve switch MIP globally vali implied bound cuts switch e
MIP probing level MIP locally valid implied bound cuts switeh 1
RINS heuristic frequency Lftand-profect cuts switch for MIP and MIOCP .
feasibility pump switch HeReuen .

MIP MIR (mixed nteger rounding) cut switch
scale parameter for subMIPs

Reformutation Linearization Techriaue (RLT) cuts 2
algorithm for initial MIP relaxation of a subMIP of a MIP

MIP sero-hattcute it
algorithm for subproblems of a subMIP of a MIP.
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Configuring Branch-and-bound Solvers

= Set of problems {P,,i € [n]}
= Solver configuration parameters ¢

= Solution quality metric S(P;,¢) by solving problem P; with a BnB solver configured
with ¢

min ) S(P, ¢) (3)

i€(n]
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Configuring Branch-and-bound Solvers
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min ), (P, 9) (4)

i€[n]
Solution: SMBO - sequential model based optimization / derivative-free optimization /
global optimization / kriging / Bayesian optimization
Implications

= If ¢ is a good configuration for all ;,i € [n] (on average), it would be good for a new
problem, provided ...

= the set {P,,i € [n]} is a diverse set, but ...

= the score S(-,-) needs to be calibrated properly so that we don’t end up optimizing
only for the problems with scores in the higher end
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Configuring Solvers with a Model using Problem Features

Extension. Utilize features of the MILP problem
Given features g; for a problem P,

= learn a ML model M that predicts the score S(P,, ¢) —that is M(g;,¢) ~ S(P;,¢), and

= for any problem P; with features g;, pick solver configuration by minimizing the
predicted score M(g;,¢) over ¢ (over the space of valid configurations):

n}/i[n Z S(P,¢;) subject to Vi€ [n], ¢ € argmq;nM(gi,(p) (5)

i€ln)

Solution. Extended version of SMBO
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Limitations

= Single solver conf for all problems seems limiting
= Handled to some extent by using problem features — adapting solver conf to
problem
= SMBO requires multiple evaluations of S(P, ¢) for different problem P and solver
confs ¢

= Each eval requires a MILP solution
= Might be computationally infeasible since we might need to use a lot of problems

{P;,i € [n]} and obtain evals for many solver configurations ¢ to learn a good
scorer model M.

13/49 Sanjeeb Dash / Parikshit Ram — Machine Learning for Ct ial Of lion and Continuous Optimi; © 2023 IBM Corporation




Guiding Solvers with a Policy

Problem

Vv

Features

Configurator

ML

~

Solver conf
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Problem

|

Prob Feat

Action
space

+

Next action

+

State feat «—— State
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Policy: Imitation Learning

Imitation Learning

The ML model M corresponds to a “policy” — a model that
makes a sequence of decisions — that learns to mimic an

expert policy.
Prob Feat

Why might this be useful?
Sonce Next action = Do not have access to expert policy at execution

= Expert policy computationally expensive to constantly
invoke during execution — for example, Strong Branching
is expensive to invoke at each variable selection.

State feat ¢—— State
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Policy: Imitation Learning

Prob Feat

Action
space

Next action

State feat ¢—— State
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Imitation Learning

The ML model M corresponds to a “policy” — a model that
makes a sequence of decisions — that learns to mimic an
expert policy.

Given a problem P; (with features g;) solved by an expert,

= We have a sequence of state-action pairs {(s;,ar) };c |z
from the execution

= We learn M to mimic the actions taken by the expert in
any state

mlnz Z.ﬁf( \a,,l/

i€[n]te|T;]

M (gi,st) )
N

expert action action by ML

(6)
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Policy: Imitation Learning

Various MILP benchmarks already provide data for this form

Problem .
of learning.
Opportunities for innovation

Prob Feat —> ML

l = How to create problem features?

aacs |/ Nextaction = How to create features for states and action spaces?
= How to model the policy M?

State feat ¢<—— State

© 2023 IBM Corporation
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Policy: Reinforcement Learning

Prob Feat

Action
space

Next action

State feat ¢<—— State
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Reinforcement Learning

The ML model M corresponds to a “policy” — a model that

makes a sequence of decisions — that learns to maximize

some reward.

Given a problem P; (with features g;),

= Rollout policy M to solve P,

= Obtain a sequence of state/action/reward tuples
{(Staatartast+1)7t € [Tt]}

= We learn M to maximize the rewards from the actions

mn ¥ ¥

i€[n]r€(T;]

Wi : It

(7)

state weight reward at state ¢
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Policy: Reinforcement Learning

The data for this kind of learning needs to be generated on

the fly — we will have to (partially or fully) solve MILPs for
each policy rollout.

Additional opportunities for innovation

Problem

Prob Feat —> ML

l = How to design a useful reward mechanism?
Aaion = How to model intermediate rewards in a MILP solution
space Next action n
path?
—a = = How to learn in a “sample efficient” manner — that is, not

have to solve a lot of MILPs?
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Existing Literature: Leveraging ML in MILP

Paper Decision ML Technique+Model Data
He et al. [2014] Node selection  Imitation Learning node (4); branching (4-5);
& pruning w/ policy network tree-specific (5);

Khalil et al. [2016]%  Branching var Learning to rank
w/ linear model
(Imitation Learning)

static problem (18);
dynamic node (54);
SB scores as targets;

Khalil et al. [2017] Heuristics Linear model
which & if per-heuristic

global (4); depth (2);
node LP (8); frac-score (35);

Balcan et al. [2018]  Branching var Linear model

Diff var selection scores

= 1 Learning and deployment can be done on-the-fly
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Existing Literature:

Leveraging ML in MILP
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Paper

Decision ML Technique+Model

Data

Fischetti et al. [2019]

Classification
w/ random forests

MILP resolution

node (4); node LP (11);
tree (6); global bounds (5);

Tang et al. [2019]F

Reinforcement Learning
w/ policy network
(attention+LSTM)

Cutting plane

current set of csts;
current sol of LP relaxation
set of Gomory’s cuts

Gasse et al. [2019]

Branching var Imitation Learning
w/ GNN based

problem feat

MILP — var-cst BP graph;
var feat; edge feat; cst feat
SB choice as targets

Gupta et al. [2020]

Branching var Imitation Learning

w/ hybrid GNN+MLP

graph feat [Gasse et al., 2019]
per-node feat [Khalil et al., 2016]
SB choice as targets

= T For IP only

lion and Continuous Optimi;
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He et al. [2014]

Features
= Node features: Node LB, estimated objective, depth, whether it is child/sibling of last
selected node

= Branching features: For branching var leading to current node, pseudocost, (root LP
sol val - current node LP sol val), (val - current bound)

= Tree features: global LB, global UB, integrality gap, num sols found, if U — L =
Performance

Ours Ours (prune only) SCIP (time) Gurobi (node)
speed OGap IGap speed OGap IGap OGap IGap OGap  IGap

MIK 4.69% 0.04%0 2.29% 4.45x 0.04%c 2.29% 3.02%0 1.89% 0.45%0 2.99%
Regions  2.30x 7.21%c¢ 3.52% 2.45x 7.68%0 3.58% 6.80%c 3.48% 21.94%. 5.67%
Hybrid  1.15x 0.00%¢ 3.22% 1.02x 0.00%c 3.55% 0.79%0 4.76% 3.97%0 5.20%
CORLAT 1.63x 8.99% 22.64% 4.44x 891% 17.62%  6.67% fail 2.67% fail

Dataset

© 2023 IBM Corporation
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Khalil et al. [2016] Features
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Feature Description Count Reference
Static Features (18)
Objective function coeffs. Value of the coefficient (raw, positive only, negative only) 3
Num. constraints Number of constraints that the variable participates in (with a non-zero coefficient) 1
The degree of a constraini is the number of variables that participate in it. A variable may participate in
Stats. for constraint degrees  multiple constraints, and statistics over those constraints’ degrees are used. The constraint degree is 4
computed on the root LP (mean, stdev., min, max)
Stats. for constraint coeffs. A variable’s positive (negative) coefficients in the constraints it participates in (count, mean, stdev., min, 10
max)
Dynamic Features (54)
Slack and ceil distances min{#t — |#t], [#] — &} and [#%] — & 2
Upwards and downwards values, and their corresponding ratio, sum and product, weighted by the (Achterberg
Pseudocosts ™ 5
of r. 2009)
- . Number and fraction of nodes for which applying SB to variable r; led to one (two) infeasible children
Infeasibility statistics N . J 4
(during data collection)
. A dynamic variant of the static version above. Here, the constraint degrees are on the current node’s LP.
Stats. for constraint degrees N . . . y - 7
The ratios of the static mean, and to their dynamic s are also features
Min/max for ratios of (Alvarez,
" N Minimum and maximum ratios across positive and negative right-hand-sides (RHS) 4 Louveaux, and
constraint coeffs. to RHS
Wehenkel 2014)
. The statistics are over the ratios of a variable’s coefficient, to the sum over all other variables’ coefficients, (Alvarez,
Min/max for one-to-all X N . . - - . .
N N for a given constraint. Four versions of these ratios are considered: positive (negative) coefficient to sum of 8 Louveaux, and
coefficient ratios o . .
positive (negative) coefficients Wehenkel 2014)
An active constraint at a node LP is one which is binding with equality at the optimum. We consider 4
weighting schemes for an active constraint: unit weight, inverse of the sum of the coefficients of all
Stats. for active constraint variables in constraint, inverse of the sum of the coefficients of only candidate variables in constraint, dual 24 (Patel and
coefficients cost of the constraint. Given the absolute value of the coefficients of x; in the active constraints, we Chinneck 2007)

compute the sum, mean, stdev., max. and min. of those values, for each of the weighting schemes. We also
compute the weighted number of active constraints that @ is in, with the same 4 weightings

Sanjeeb Dash / Parikshit Ram — Machine Learning for Ct ial Of and Continuous Of

© 2023 IBM Corporation



Khalil et al. [2016] Performance

‘CPLEX-D SB PC SB+PC SB+ML

All (523) 11 129 66 63 52

Unsolved Easy (255) 0 12 15 14 13
Instances Medium (120) 2 43 22 22 17
Hard (148) 9 74 29 27 22

All (523) 46,633 33,072 92,662 70,455 59,223

Num. Nodes 25y (255) 3255 3,610 7,931 5224 5,124
um. NOCES - Medium (120) | 173417 121,923 | 395199 288916 234,093
Hard (148) 1,570,891 519,878 | 1,971,333 1,979,660 1,314,263

All (523) 499 2,263 960 1,093 1,059

Total Time 3y (259 111 602 243 361 382
Medium (120) 1123 6,169 2,493 1,892 1,776

Hard (148) 3421 9,803 4,705 4,718 4,039
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Khalil et al. [2017]
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Features

Global Features (4)

Optimality gap

Infinite gap?

Root LP value / Global Lower Bound
Root LP value / Global Upper Bound

Depth Features (2)

Node Depth / Max. Depth in Tree
Node Depth / Max. Possible Depth

Node LP Features (8)

Sum of vanables’ LP solution fractionalities / Num. of Fractional Variables
Num. of Fractional Vanable / Num. of Integer Vanables

Num. Variables Roundable Up (Down) / Num. of Integer Variables (x2)
Num. of Active Constraints / Num. of Constraints.

Node is root?

Root LP value / Node LP value

Root LP value / Node Estimate

Scoring Features for Fractional Variables (35)

Performance
MIPLIB — Num. Instances = 280 | DEF ML | ML/DEF
Primal integral 95.65 89.65 0.94
Time to first incumbent 34.23 26.60 0.78
Time to best incumbent 746.95 738.71 0.99
Total calls (ML heurs.) 755.19 514.77 0.68
Total time (ML heurs.) 124.38 101.88 0.82
Num. incumbents (ML heurs.) 1.85 245 133
Success Rate (ML heurs.) 0.00036 0.00064 1.79
Num. incs. per heur. sec. (ML heurs.) 0.00565 0.00860 1.52
Num. Instances Solved 170 172 1.01
Total time (BnB) 396647  4,119.67 1.04
Total nodes (BnB) 2745877 2790443 1.02
Primal-dual integral 34,390.33 3532991 1.03

Number of Up [ocks (x5) — Number of Down Locks (x5)
Normalized Objective Coefficient (x5)

Objective Gain (x5)

Distance to root LP solution (x3)

Vector Length (x5)

Pseudocost score (x5)
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Fischetti et al. [2019] Features
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Count

Group name

Features general description

Last observed global
measures

Nodes left and pruned, it-
erations count

Node LP integer infeasi-
bilities (iinf)

Incumbent

Best bound
Node LP objective

Node LP fixed variables

Depth and tree traversal

Gap, global bounds ratio, fraction of nodes left attaining max/min objective esti-
mate, comparison of max/min estimates with incumbent, primal-dual integral
Throughput of pruned nodes, comparison with nodes left, trend w.r.t. max observed
# of nodes left, simplex iterations throughput

Max/minfavg number of observed iinf, fraction of nodes with iinf below 5% quan-
tile value

Throughput of incumbent updates, average frequency and improvement of updates
(normalized), distance from last observed update (normalized), was an incumbent
found before an integer feasible node (boolean)?

Throughput of best bound updates, average frequency and improvement of updates
(normalized), distance from last observed update (normalized)

Fraction of nodes with objective above the 95% quantile value, normalized differ-
ences between quantile threshold and global bounds

Fraction of max/min observed # of fixed variables, fraction of nodes with # of fixed
variables above 95% quantile value, normalized distance from last observed peak
Comparison of max observed depth with # of processed nodes, normalized height
of last full level and waist of the tree, average length of dives (normalized), fre-
quency of leaps in the traversal
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Fischetti et al. [2019] Performance

27/49

Dum LR SVM RF ExT MLP
Accuracy  0.57 093 0.94 094 093 093
Precision 0.57 093 094 095 094 093
Recall 057 093 094 094 093 093
Fl-score  0.57 093 0.94 094 093 093
Sanjeeb Dash / Parikshit Ram — Machine Learning for Ct o] lion and Continuous O}
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Gasse et al. [2019] Features

Bi-partite Graph & Graph-Convolutional NN

- . . final
nitial - -
initial C.slde' V:ud(? embedding
embedding convolution  convolution )
+ softmax

v v /4v2 m(x)
nxd n x 64 ” nx1

n X 64
e —
MMN
c ——c! c?

m X c m % 64 m % 64

€11
%61,2
€13
@\62.3

Figure 2: Left: our bipartite state representation s, = (G, C, E, V) with n = 3 variables and m = 2
constraints. Right: our bipartite GCNN architecture for parametrizing our policy mg(a | s¢).

Jdb
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Gasse et al. [2019] Performance

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 1730+ 6.1% 0/100 17 £13.7% 41134+ 43% 0/ 90 171 £ 6.4% 360000+ 00% 0/ 0 n/a *na%
RPB 898 &+ 4.8% 0/100 54 +208% 60.07x 37% 0/100 1741 = 7.9% 1677.02 £ 3.0% 4/ 6547299 + 49%
TREES 928+ 49% 0/100 187 £ 94% 9247+ 59% 0/100 2187 = 7.9% 2869.21 &+ 32% 0/ 3559013 & 93%
SVMRANK 8.10% 3.8% 1/100 165+ 82% 7358+ 3.1% 0/100 1915+ 3.8% 2389.92 + 23% 0/ 4742120+ 54%
LMART  7.19+ 4.2% 14/100 167 £ 9.0% 5998 £ 39% 0/100 1925 £ 4.9% 216596 = 2.0% 0/ 54 45319 £ 3.4%
GCNN 659+ 3.1% 85/100 134 £+ 7.6% 4248 = 2.7% 100/100 1450 = 3.3% 1489.91 + 3.3% 66/ 70 29981 &+ 4.9%
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AAAI'21 tutorial on Recent Advances in Integrating Machine Learning and Combinatorial
Optimization https://sites.google.com/view/ml-co-aaai-21/

SCIP based toolkit for Research on ML4CO.
https://doc.ecole.ai/master/index.html
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https://sites.google.com/view/ml-co-aaai-21/
https://doc.ecole.ai/master/index.html

Outline

ML for Continuous Optimization
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Learning to optimize with gradients

Problem:

min (6)

Gradient descent:
ekJrl i Gk _ akvef(ek)

(8)

(9)

Optimization with a ML model M, parameterized with ¢ [Andrychowicz et al., 2016]:

04 0k 1 M, (Vef(ek)>
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Meta-optimization problem

For optimization objective f with optimizee variables 6, and a optimization horizon K,
meta-objective with respect to the optimizer variables ¢:

Z(9)=Ey[f(6f)] (11)

éwkf (9}?)] (12)

Generalization:

2(0)=E,
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A simple recurrent neural network

34/49

RNN are neural-networks used for learning with sequences (6y,y;), (6,y2),... where
we want the learner to take into account the fact that the data is sequential in nature.

Classical ElIman network with input 6,_; & hidden-layer “history” vector #;:

hy = o (Wi6—1 +Uphi—1 +by) (13)
yi = Oy (Wyh; + by) (14)

where ¢ = {W,,Uy, b, W, by} and o, and o, are the activation functions.

In practice, Long Short Term Memory (LSTM) networks [Hochreiter and Schmidhuber,
1997] and Gated Recurrent Unit (GRU) networks [Cho et al., 2014] are the RNN-du-jour.
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Recurrent neural network as optimizer [Andrychowicz et al., 2016]

Optimizee ! m i F /\ F m i 6.1

Optimizer T I i
Mo P h | e

gk-i-l,hk-i-l <_M¢ (Vef(ek),hk> ,

ek-‘rl — 9k+gk+1
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Training the RNN

Input: Distribution of objective functions F

Input: Learning rate B, optimization horizon K, trajectory weights w¥,k € K]
Input: Initialization of the optimizer variables ¢

while not converged do

Sample f ~ F with optimizee variables 6y
Initialize 9}’ randomly, hy < 0
Unroll K steps with RNN M, (k=1,...,K): // inner optimization
g My (Vo r0F )W), 0f o g (17)
Update the RNN parameters ¢: // RNN-optimization
& ok
VoL 7% Y whre5), 9« 9—BVsZ (18)
k=1
return ¢

\.

Note. Need second-order derivative of f wrt 6 or assume 8V9ff/8¢ =0
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Details: RNN Architecture

37/49

Coordinate-wise RNN — allows 6, to have different dimensionalities
RNN with 1-dimensional input

Each dimension in 6, shares RNN weights,

But has its own (scalar) history #* € h*

SUSIR (A

Andrychowicz et al. [2016] say “... has the nice effect of making the optimizer
invariant to the order of the variables (... ) since the same update rule is used
independently for each coordinate ...~

Sanjeeb Dash / Parikshit Ram — Machine Learning for Ct ial Of lion and Continuous Optimi; © 2023 IBM Corporation




Details: Distribution of Objectives

Wichrowska et al. [2017, Section 4.1] suggest the following distribution:
= 2-dimensional problems from literature (Goldstein, Hartmann, Rosenbrock, Branin)
= Well-behaved convex problems (quadratic bowls, logistic regression on linearly
separable data)
= Objectives with slow convergence
= “many dimensional oscillating valley whose global minimum lies at «”,

= ‘problems with a loss consisting of a very strong coupling term between
variables in a sequence”’,
= objective “only depends on the minimum and maximum valued variables, so the

gradients are extremely sparse and (...) has discontinuous gradients”
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Modification: Weighing the Optimization Trajectory
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K
Z(9) =Ef LZ wkf(ef)]
=1

Different choices of w*:
= wk =1[k = K] — focus on final solution [Lv et al., 2017]
= wk =1 (or 1/K) — focus on full trajectory [Andrychowicz et al., 2016]

(19)

= wk =k — more focus on later steps; but some on earlier steps too [Ruan et al., 2020]

Sanjeeb Dash / Parikshit Ram — Machine Learning for Ct ial Of ion and Continuous Optimi:

© 2023 IBM Corporation



Modification: Transforming the RNN Training Objective
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Original meta-objective:
K
Z(9)=Ey [Zwkf(B}‘)] (20)
k=1

Assuming (or translating) ming, f(8y) = OV, for some € > 0, Wichrowska et al. [2017]
instead consider:

ZL(9)=Ey [Zwklog (f(e}‘)+e> (21)
k=1

to better encourage exact convergence to minima.
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Modification: Generating Harder Functions to Train on

Transformation to f for better RNN-training [Lv et al., 2017, Wichrowska et al., 2017]:
= Simulate problems with sparse gradients by setting large fraction of V4, to 0.

Simulate different scaling across optimizee variables with a linear (randomized)
transformation of the variables.

=
= Simulate different steepness profiles by applying a monotonic transformation to the
objectives

=

Simulate complex objectives with diverse parts which sums the objective values and
concatenates the variables from a diverse set of objectives

f(6r) = f1(0,) + f2(6p,) + ...
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Modification: Additional RNN Inputs
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Instead of the gradient Vg as the RNN input, consider versions of [Lv et al., 2017,
Wichrowska et al., 2017]:

= Momentum terms m* < nim*~" + (1 —11)Vq,f(6))
2
= Relative gradient magnitudes v* < V¥~ 4+ (1 — 1) (Veff(ej’f)> , where

2
(Veff(ej’f)) is the element-wise square of Veff(()’;)

g N My (Vo £(05),mb v h) (22)
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Recent Results [Metz et al., 2022]

Best cases
MLP with dropout MLP autoencoder
0.1004 0.012
0.010
g 0.095 4 @
- 3 0.008
0.090 1
0.006
00851 (a) (b)
0 2500 5000 7500 10000 0 2500 5000 7500 10000
Training steps Training steps
Worst cases
LSTM128 bytes LSTM256 32k vocab
48
« 46
wn
(=]
— a4
42 (d)
0 2500 5000 7500 10000 0 2500 5000 7500 10000
Training steps Training steps
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Recent Results [Metz et al., 2022]

VeLO is more than Hyperparameter free:

24 2% times faster than|  __ \o10 (1 trial)
, LR-tuned Adam on LOpt (RNN MLP) (1 trial)
2 50% of tasks LOpt (STAR) (1 trial)
7r i Hyperparameter tuned :
—— OptList (10 trials)
2]

Shampoo (14 trials)
—— NAdamW (1k trials)

20_—_——————————'—_—————m* ==+ AdamLR* (14 trials)

21 . '
0.0 0.2 0.4 0.6 0.8 1.0
Task percentile

Speedup over LR-tuned Adam
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Learning to Optimize with Zeroth-order Oracle [Ruan et al., 2020] IEE

Learned optimizer with gradients:
617! < 0f + My (Vo,/(6)) (23)

Instead consider zeroth-order gradient estimates [Liu et al., 2018] with n random
Gaussian directions u; € RY,i = 1,...,n, and a smoothing parameter y > 0:

Vo f(6f) = — Zul (£(0f +pu) - £(65)). (24)
Learned optimizer with gradient estimates:
67! < 0f + My (Vo,£(6)) (25)

We can also “optimize” for the random directions u; by modifying the diagonal of the
covariance matrix of the Gaussian.
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Learning to Optimize with Function Values [Chen et al., 2017]
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Learned optimizer for function values:
01— My (6}.£(65)) (26)

= Useful for black-box optimization (like in hyperparameter optimization),
= But RNN training requires first-order derivative of f w.r.t. 6

= Cannot use coordinate-wise RNN, needing a RNN per optimizee variable — no
parameter sharing between variables in 6

= For cheap f, might be better to use L20 with (zeroth-order) gradient estimates
= Open question: weight sharing RNN that does not use gradient estimates
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Resources

47/49

= Survey — Learning to Optimize: A Primer and A Benchmark [Chen et al., 2022]
= Invited talk by Jascha Sohl-Dickstein (Google) at ICLR 2023:

= Learned optimizers: why they’re the future, why they’re hard, and what they
can do now

= https://iclr.cc/virtual/2023/invited-talk/14236
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