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Lecture 2 Outline

» Rule-based regression
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- Rule-based methods
- Embedding-based methods

» Linear Programming Formulation
- Column Generation Technique

» Results



Regression

Features: X4,...,X,,
Data: {(x;;y;) : 1 € 1,2,...,n} where z; € R™,
Label y; € R ({0, 1} for logistic regression)

Feature X, is either numeric or categorical.

Goal: Find function f such that y; ~ f(x;).



Regression contd.

Linear regression: f = X + o Xo+ -+ ¢nXm

Rule-based Linear regression: Add new features/variables corresponding
to rules



Related column generation results

» Rule-based Linear regression: Eckstein, Kagawa, Goldberg 17,19

» Rule-based Logistic regression: Wei, Dash, Gao, Gunluk '19

> Goal: Given features X, find function f(X) = 8, + >_"", 8;X; such
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- Classify new data point x; with label 1 if > £, 0 otherwise.

> Find f(X) by minimizing the negative log-likelihood on the training
data (use #; regularization for sparsity)
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Rule-based Logistic regression..
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Consider a “missing” feature k (8, = 0). To find the effect of increasing
Bk, compute partial derivative of ith objective term w.r.t. increasing g
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y(x;) is the predicted value for data point z;, and r; = y(x;) — v;



Pricing IP
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Pricing IP Contd.

All datais assumed to be binary and in the form (x;, y;) € {0, 1} x{0,1}
for logistic regression. Non-binary z is binarized as in lecture 1.
- ;5 1s the value of z; for feature j.

- a;, z; are binary variables; z; is 1 iff feature j is chosen to be part of a
rule/clause

- a; 1S the value given by chosen rule/clause to data point i

The 4+ term in the objective means we solve two optimization problems
to get the best clauses for increasing/decreasing 3, from 0.
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Results

logistic regression mean rank

linear regression mean rank 4.9 3.0 4.5 3.5 3.4 5.0

Logistic/Linear Rule Regression with CG (LRR, LRRN) is highly competitive when tuned to maximize
performance and uses 2-4 times fewer rules than RuleFit [Friedman & Popescu, 2008]



Knowledge Graph completion

Knowledge Graph (KG): Directed node/edge-labeled multigraph; each
edge is a “fact”; edge labels represent binary relations between nodes.

Example: (a,r,b) is a fact or ry(a, b) Is true
a, b, c,d could be individuals, [ s
r,r1, 9 could son_of, brother_of, related_to

Knowledge graphs often have missing (and incorrect) facts.

KG completion problem:
Find missing facts e.g., (b, brother_of, a), (c, brother_of, a)

Popular methods: Rule based & Embedding based
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Rules
Example: (X, son_of, Y) A (Y,son_of, Z) — (X, grandson_of, V)
KG Completion Problem: Answer query (a,r,?)

Standard Approach:

1. Learn rule-based function f,.(X,Y) that gives high scores to likely
facts (X, r,Y) where X,Y are nodes in the graph, and r is an edge-
label

2. Answer query (a,r,?) by finding x such that f,.(a, x) has highest score.

3. Ifthecorrectansweris b, measure accuracy by average rank/reciprocal
rank of b (MR/MRR)
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Prior work

Kok, Domingos '05, Richardson, Domingos 06 — Markov Logic Networks
Yang, Yang, Cohen ’17 (NeuralLP) — Neuro-symbolic methods
Rochstatel, Riedel ’17 (NTP) —,,

Sadeghian, Armandpour, Ding, Wang ’19 (DRUM) —,,

Evans, Grefenstette 18 — Differential ILP

Das et al. ’18 (Minerva) — Reinforcement Learning

Qu et. al. ’21 (RNNLogic) — RNN + Probabilistic methods

Meilicke et. al. 19 (AnyBURL) — Data mining

Teru, Denis, Hamilton ‘20 (Grall) — Subgraph reasoning

Advantages: (1) Inductive reasoning is possible.
(2) Interpretable models when few rules are generated.

(1) Lower levels of accuracy compared to embedding methods

Drawbacks: 5) current methods do not scale
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Embedding based methods

Approach: Find v, € R” for each node ¢ and a mapping 7, : R*¥ — RF¥
for each relation r such that the score ||T.(v,) — vs|| is small for each
fact (a,r,b).

Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko 13 (TransE)
Yang, Yih, He, Gao, Deng '15 (DistMult)

Trouillon, Welbl, Riedel, Gaussier, Bouchard '16 (ComplEx)
Dettmers, Pasquale, Pontus, Riedel '18 (ConvE)

Lacroix, Usunier, Obozinski '18 (ComplEx-N3)

Sun, Deng, Nie, Tang 19 (RotatE)

Advantages: (1) Reasonable accuracy
(2) Scalable

Drawbacks: (1) Not effective for inductive reasoning
(2) Model is not interpretable.

13



Our work

Goals: Develop a scalable, rule-learner returning compact rule sets

- Interpretability is an explicit goal, and we return low-complexity rules
- We trade off complexity versus accuracy

- Scalability is attained by solving linear programming models instead
of non-convex models
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Our approach

Approach: Learn few (FOL) rules Ry,...,R, and positive weights
wy, . .., w, Where each R; has the form

Tl(X, X1> VAN T2<X1,X2> VANKIRIERVA Tl(Xl—la Y) — ’I“(X, Y)

where rq, ..., r; are relations in G.

Length of this rule is [; left-hand-side is the clause C; : V x V' — {0, 1}

The learned prediction/scoring function f, : V x V — R forris:

sz ) VX, Y e V
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Details

Cl (Xr Y)
Y
Rule T'l(X, Xl) N I®) (XIJXZ) FAN T3 (Xz, Y) - T(X, Y) and
KG: associated clause-edge vector
a-j are entities
r,ry, I, r;are relations
edge | M AT AT r r,(a,b) A1y, (b,c) A1y (c,d) is true and
(a,d) [ 1) 1] ——— r(ad)istrue
(a,e) 1 1
(f.c) 0 1 positive instances:
(g,f) 1 1 edges in KG = E,
(i,f) 1 1
(i,j) 0 1
(e,f) 1 0
(a,i) 1 0 negative instances:
(e,) 1 0 non-edges (sample)
’ _F,
aiq
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LP to learn KG rules

Minimize error for weighted collection of rules:

min z &+ T 2 neg;wy
w,§

i:y;i=1 keK
§i + ek QixwWr =1, =0, (¢ hy) EE;

ZCka <C

keK
Wj € [0,1], keK
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Model details

- F,. = set edges labeled by r, and (¢;, h;)=th edge in E,.

- wy, variable gives weight for rule k; w;, > 0 implies rule k is chosen
- a;x 1S @ constant = Cy(t;, h;)

- ¢, Is a constant = 1+ rule length

- C'1s a parameter bounding weighted complexity of chosen rules

- 7 IS a parameter, neg;. Is a constant

Modeling — Use all positive facts for a relation + sample some negative
facts for the LP model

Algorithmic issues — Use simple shortest path heuristics to find
relational paths, and associated rules — Iterate over different values of
tau and complexity

Code available at: https://github.com/IBM/LPRules
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Column generation

Step O — Fix an initial complexity and tau value

Step 1 — Use simple heuristics to create an initial collection of rules
Step 2 — Set up LP model and solve it

Step 3 — Obtain dual values of LP model

Step 4 — Dual values indicate which facts are “well-covered” and which
are not. Heuristically generate new rules that “cover” facts that are not
well-covered.

Step 5 — Repeat Steps 2 — 4 till termination criterion
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Sizes of datasets

Kinship 8544 1074 1068
UMLS 46 135 5216 661 652
FB15k-237 237 14541 272115 20466 17535
WN18RR 11 40943 86835 3134 3034
YAGO3-10 37 123182 1079040 5000 5000

Neuro-symbolic methods take a long time on FB15k-237 and cannot
handle YAGO3-10
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Experiments (accuracy)

ComplEx-N3 | AnyBURL | NeuralLP w RNNLogic | LPRules

Kinship 0.889 0.626 0.652 0.566 0.687 0.746
UMLS 0.962 0.940 0.750 0.845 0.748 0.869
FB15k-237 0.362 0.226 0.222 0.225 10.288 0.255
WN18RR 0.469 0.454 0.381 0.381 0451 0.459
YAGO3-10 0.574 0.449 0.449

T We could not run RNNLogic on FB15k-237 and report numbers taken
from Qu et al. (2021)
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Running time + number of rules

ComplEx-N3 | AnyBURL | NeuralLP w RNNLogic | LPRules

Kinship 0.889 0.626 0.652 0.566 0.687 0.746
UMLS 0.962 0.940 0.750 0.845 0.748 0.869
FB15k-237 0.362 0.226 0.222 0.225 10.288 0.255
WN18RR 0.469 0.454 0.381 0.381 0.451 0.459
YAGO3-10 0.574 0.449 0.449

Avg number of rules per relation and wall clock running time on a 60
core machine
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Accuracy versus Complexity tradeoff

UMLS WN18RR
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Change in MRR with change in average rules per relation
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MRR
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MRR values using rules generated by AnyBURL and RNNLogic
(experiments A-D)

A — Use other rule-based code
B — Take rules and weights and use in our prediction function
C — Recalculate weights using complexity bound

D — Add our rules and recalculate weights
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