
IBM Research

Machine Learning for Combinatorial Optimization and
Continuous Optimization
Combinatorial Optimization and Machine Learning | Lecture 8

Sanjeeb Dash / Parikshit Ram

June 28, 2023

1/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Plan

1 ML for Combinatorial Optimization

2 ML for Continuous Optimization

2/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Outline

1 ML for Combinatorial Optimization

2 ML for Continuous Optimization

3/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



A Commom Problem: MILP

Mixed Integer Linear Program or MILP

min
θ

c⊤θ (1)

subject to Aθ ≤ b, (2)

Terminology

⇛⇛⇛ D integer variables, d continuous variables

⇛⇛⇛ c – (D+d) objective coefficients

⇛⇛⇛ A – constraint coefficient matrix for p constraints

⇛⇛⇛ b – p constraint thresholds

4/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Exact Solver: Branch and Bound

Algorithm 1 Branch-and-bound algorithm (BnB) for MILP P
Initialize: Set of open leaves S←{P} // run preprocessing routines

Initialize: UB U ←+∞, LB L←−∞ respectively
while S ̸= /0 and U > L do

Select open leaf M from S // node selection routines

if M is an integral node then
Compute obj l̂ in M, update U ←min{U, l̂}, L←min{L, l̂}, and continue

Relax M & solve to get node LB l̃ // run primal heuristics or add cuts here

if l̃ >U then
continue // can prune this node

L←min{L, l̃}
if solution integral then

U ←min{U, l̃} and continue

// variable selection routines

Select fractional variable j ∈ [D], split, and push child problems M1 and M2 into S

5/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring a Branch-and-Bound Solver

Decisions to make:

⇛⇛⇛ Which open leaf to consider next?

⇛⇛⇛ Which fractional variable to split on?

⇛⇛⇛ Whether and which primal heuristics to run?

⇛⇛⇛ Whether and which cuts to add?

⇛⇛⇛ Whether and which preprocessing routines to run?

⇛⇛⇛ . . .

Decision frequency:

⇛⇛⇛ Once initially to globally set solver configuration – a single “decision”

⇛⇛⇛ Adaptively, during the execution at each point that needs a choice – a “policy” to
make a sequence of decisions

6/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring a Branch-and-Bound Solver

Quantifying the quality of a decision or policy – the (sequence of) decisions

⇛⇛⇛ Time to solve – that is, time to U = L

⇛⇛⇛ Branch-and-bound tree size

7/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring a Branch-and-Bound Solver

What has been automated with machine learning?

⇛⇛⇛ Node selection

⇛⇛⇛ Variable selection

⇛⇛⇛ Cutting planes selection

⇛⇛⇛ Primal heuristic selection

⇛⇛⇛ Formulation selection

⇛⇛⇛ Neighborhood search heuristics

⇛⇛⇛ Diving heuristics

8/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring Branch-and-bound Solvers

9/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring Branch-and-bound Solvers

⇛⇛⇛ Set of problems {Pi, i ∈ [n]}
⇛⇛⇛ Solver configuration parameters φ

⇛⇛⇛ Solution quality metric S(Pi,φ) by solving problem Pi with a BnB solver configured
with φ

min
φ

∑
i∈[n]

S(Pi,φ) (3)

10/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring Branch-and-bound Solvers

min
φ

∑
i∈[n]

S(Pi,φ) (4)

Solution: SMBO – sequential model based optimization / derivative-free optimization /
global optimization / kriging / Bayesian optimization
Implications

⇛⇛⇛ If φ̄ is a good configuration for all Pi, i ∈ [n] (on average), it would be good for a new
problem, provided . . .

⇛⇛⇛ the set {Pi, i ∈ [n]} is a diverse set, but . . .

⇛⇛⇛ the score S(·, ·) needs to be calibrated properly so that we don’t end up optimizing
only for the problems with scores in the higher end

11/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Configuring Solvers with a Model using Problem Features

Extension. Utilize features of the MILP problem
Given features gi for a problem Pi,

⇛⇛⇛ learn a ML model M that predicts the score S(Pi,φ) – that is M(gi,φ)≈ S(Pi,φ), and

⇛⇛⇛ for any problem Pj with features g j, pick solver configuration by minimizing the
predicted score M(g j,φ) over φ (over the space of valid configurations):

min
M ∑

i∈[n]
S(Pi,φi) subject to ∀i ∈ [n], φi ∈ argmin

ϕ
M(gi,ϕ) (5)

Solution. Extended version of SMBO

12/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Limitations

⇛⇛⇛ Single solver conf for all problems seems limiting
⇛⇛⇛ Handled to some extent by using problem features – adapting solver conf to

problem

⇛⇛⇛ SMBO requires multiple evaluations of S(P,φ) for different problem P and solver
confs φ

⇛⇛⇛ Each eval requires a MILP solution
⇛⇛⇛ Might be computationally infeasible since we might need to use a lot of problems
{Pi, i ∈ [n]} and obtain evals for many solver configurations φ to learn a good
scorer model M.

13/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Guiding Solvers with a Policy

Problem

Features

Configurator
ML

Solver conf

Problem

Prob Feat ML

Next action

StateState feat

Action

space

14/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Policy: Imitation Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Imitation Learning

The ML model M corresponds to a “policy” – a model that
makes a sequence of decisions – that learns to mimic an
expert policy.

Why might this be useful?

⇛⇛⇛ Do not have access to expert policy at execution

⇛⇛⇛ Expert policy computationally expensive to constantly
invoke during execution – for example, Strong Branching
is expensive to invoke at each variable selection.

15/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Policy: Imitation Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Imitation Learning

The ML model M corresponds to a “policy” – a model that
makes a sequence of decisions – that learns to mimic an
expert policy.

Given a problem Pi (with features gi) solved by an expert,

⇛⇛⇛ We have a sequence of state-action pairs {(st ,at)}t∈[Ti]

from the execution

⇛⇛⇛ We learn M to mimic the actions taken by the expert in
any state

min
M ∑

i∈[n]
∑

t∈[Ti]

L
(

at ,︸︷︷︸
expert action

M(gi,st)︸ ︷︷ ︸
action by ML

)
(6)

16/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Policy: Imitation Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Various MILP benchmarks already provide data for this form
of learning.
Opportunities for innovation

⇛⇛⇛ How to create problem features?

⇛⇛⇛ How to create features for states and action spaces?

⇛⇛⇛ How to model the policy M?

17/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Policy: Reinforcement Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

Reinforcement Learning

The ML model M corresponds to a “policy” – a model that
makes a sequence of decisions – that learns to maximize
some reward.

Given a problem Pi (with features gi),

⇛⇛⇛ Rollout policy M to solve Pi

⇛⇛⇛ Obtain a sequence of state/action/reward tuples
{(st ,at ,rt ,st+1), t ∈ [Ti]}

⇛⇛⇛ We learn M to maximize the rewards from the actions

min
M ∑

i∈[n]
∑

t∈[Ti]

wt︸︷︷︸
state weight

· rt︸︷︷︸
reward at state t

(7)

18/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Policy: Reinforcement Learning

Problem

Prob Feat ML

Next action

StateState feat

Action
space

The data for this kind of learning needs to be generated on
the fly – we will have to (partially or fully) solve MILPs for
each policy rollout.
Additional opportunities for innovation

⇛⇛⇛ How to design a useful reward mechanism?

⇛⇛⇛ How to model intermediate rewards in a MILP solution
path?

⇛⇛⇛ How to learn in a “sample efficient” manner – that is, not
have to solve a lot of MILPs?

19/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Existing Literature: Leveraging ML in MILP

Paper Decision ML Technique+Model Data

He et al. [2014] Node selection Imitation Learning node (4); branching (4-5);
& pruning w/ policy network tree-specific (5);

Khalil et al. [2016]‡ Branching var Learning to rank static problem (18);
w/ linear model dynamic node (54);
(Imitation Learning) SB scores as targets;

Khalil et al. [2017] Heuristics Linear model global (4); depth (2);
which & if per-heuristic node LP (8); frac-score (35);

Balcan et al. [2018] Branching var Linear model Diff var selection scores

⇛⇛⇛ ‡ Learning and deployment can be done on-the-fly

20/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Existing Literature: Leveraging ML in MILP

Paper Decision ML Technique+Model Data

Fischetti et al. [2019] MILP resolution Classification node (4); node LP (11);
w/ random forests tree (6); global bounds (5);

Tang et al. [2019]† Cutting plane Reinforcement Learning current set of csts;
w/ policy network current sol of LP relaxation
(attention+LSTM) set of Gomory’s cuts

Gasse et al. [2019] Branching var Imitation Learning MILP→ var-cst BP graph;
w/ GNN based var feat; edge feat; cst feat
problem feat SB choice as targets

Gupta et al. [2020] Branching var Imitation Learning graph feat [Gasse et al., 2019]
w/ hybrid GNN+MLP per-node feat [Khalil et al., 2016]

SB choice as targets

⇛⇛⇛ † For IP only

21/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



He et al. [2014]

Features

⇛⇛⇛ Node features: Node LB, estimated objective, depth, whether it is child/sibling of last
selected node

⇛⇛⇛ Branching features: For branching var leading to current node, pseudocost, (root LP
sol val - current node LP sol val), (val - current bound)

⇛⇛⇛ Tree features: global LB, global UB, integrality gap, num sols found, if U−L = ∞

Performance

22/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Khalil et al. [2016] Features

23/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Khalil et al. [2016] Performance

24/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Khalil et al. [2017]
Features

Performance

25/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Fischetti et al. [2019] Features

26/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Fischetti et al. [2019] Performance

27/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Gasse et al. [2019] Features

Bi-partite Graph & Graph-Convolutional NN

28/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Gasse et al. [2019] Performance

29/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



AAAI’21 tutorial on Recent Advances in Integrating Machine Learning and Combinatorial
Optimization https://sites.google.com/view/ml-co-aaai-21/

SCIP based toolkit for Research on ML4CO.
https://doc.ecole.ai/master/index.html

30/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation

https://sites.google.com/view/ml-co-aaai-21/
https://doc.ecole.ai/master/index.html


Outline

1 ML for Combinatorial Optimization

2 ML for Continuous Optimization

31/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Learning to optimize with gradients

Problem:
min
θ∈Rd

f (θ) (8)

Gradient descent:
θ

k+1← θ
k−α

k
∇θ f (θ k) (9)

Optimization with a ML model Mφ parameterized with φ [Andrychowicz et al., 2016]:

θ
k+1← θ

k +Mφ

(
∇θ f (θ k)

)
(10)

32/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Meta-optimization problem

For optimization objective f with optimizee variables θ f and a optimization horizon K,
meta-objective with respect to the optimizer variables φ :

L (φ) = E f
[

f
(
θ

K
f
)]

(11)

Generalization:

L (φ) = E f

[
K

∑
k=1

wk f
(

θ
k
f

)]
(12)

33/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



A simple recurrent neural network

RNN are neural-networks used for learning with sequences (θ1,y1),(θ2,y2), . . . where
we want the learner to take into account the fact that the data is sequential in nature.

Classical Elman network with input θt−1 & hidden-layer “history” vector ht :

ht = σh (Whθt−1 +Uhht−1 +bh) (13)

yt = σy (Wyht +by) , (14)

where φ = {Wh,Uh,bh,Wy,by} and σh and σy are the activation functions.

In practice, Long Short Term Memory (LSTM) networks [Hochreiter and Schmidhuber,
1997] and Gated Recurrent Unit (GRU) networks [Cho et al., 2014] are the RNN-du-jour.

34/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Recurrent neural network as optimizer [Andrychowicz et al., 2016]

gk+1,hk+1←Mφ

(
∇θ f (θ k),hk

)
, (15)

θ
k+1← θ

k +gk+1 (16)

35/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Training the RNN

Input: Distribution of objective functions F
Input: Learning rate β , optimization horizon K, trajectory weights wk,k ∈ [K]
Input: Initialization of the optimizer variables φ

while not converged do
Sample f ∼ F with optimizee variables θ f

Initialize θ 0
f randomly, h0← 0

Unroll K steps with RNN Mφ (k = 1, . . . ,K): // inner optimization

gk,hk ←Mφ

(
∇θ f f (θ k−1

f ),hk−1
)
, θ

k
f ← θ

k−1
f +gk (17)

Update the RNN parameters φ : // RNN-optimization

∇φ L ← ∂

∂φ

K

∑
k=1

wk f (θ k
f ), φ ← φ −β∇φ L (18)

return φ

Note. Need second-order derivative of f wrt θ f or assume ∂∇θ f f/∂φ = 0
36/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Details: RNN Architecture

Coordinate-wise RNN – allows θ f to have different dimensionalities

⇛⇛⇛ RNN with 1-dimensional input

⇛⇛⇛ Each dimension in θ f shares RNN weights,

⇛⇛⇛ But has its own (scalar) history hk ∈ hk

⇛⇛⇛ Andrychowicz et al. [2016] say “. . . has the nice effect of making the optimizer
invariant to the order of the variables (. . . ) since the same update rule is used
independently for each coordinate . . . ”

37/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Details: Distribution of Objectives

Wichrowska et al. [2017, Section 4.1] suggest the following distribution:

⇛⇛⇛ 2-dimensional problems from literature (Goldstein, Hartmann, Rosenbrock, Branin)

⇛⇛⇛ Well-behaved convex problems (quadratic bowls, logistic regression on linearly
separable data)

⇛⇛⇛ Objectives with slow convergence
⇛⇛⇛ “many dimensional oscillating valley whose global minimum lies at ∞”,
⇛⇛⇛ “problems with a loss consisting of a very strong coupling term between

variables in a sequence”,
⇛⇛⇛ objective “only depends on the minimum and maximum valued variables, so the

gradients are extremely sparse and (. . . ) has discontinuous gradients”

38/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Modification: Weighing the Optimization Trajectory

L (φ) = E f

[
K

∑
k=1

wk f (θ k
f )

]
(19)

Different choices of wk:

⇛⇛⇛ wk = I[k = K]→→→ focus on final solution [Lv et al., 2017]

⇛⇛⇛ wk = 1 (or 1/K)→→→ focus on full trajectory [Andrychowicz et al., 2016]

⇛⇛⇛ wk = k→→→ more focus on later steps; but some on earlier steps too [Ruan et al., 2020]

39/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Modification: Transforming the RNN Training Objective

Original meta-objective:

L (φ) = E f

[
K

∑
k=1

wk f (θ k
f )

]
(20)

Assuming (or translating) minθ f f (θ f ) = 0∀ f , for some ε > 0, Wichrowska et al. [2017]
instead consider:

L (φ) = E f

[
K

∑
k=1

wk log
(

f (θ k
f )+ ε

)]
(21)

to better encourage exact convergence to minima.

40/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Modification: Generating Harder Functions to Train on

Transformation to f for better RNN-training [Lv et al., 2017, Wichrowska et al., 2017]:

⇛⇛⇛ Simulate problems with sparse gradients by setting large fraction of ∇θ f to 0.

⇛⇛⇛ Simulate different scaling across optimizee variables with a linear (randomized)
transformation of the variables.

⇛⇛⇛ Simulate different steepness profiles by applying a monotonic transformation to the
objectives

⇛⇛⇛ Simulate complex objectives with diverse parts which sums the objective values and
concatenates the variables from a diverse set of objectives

f (θ f ) = f1(θ f1)+ f2(θ f2)+ . . .

41/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Modification: Additional RNN Inputs

Instead of the gradient ∇θ as the RNN input, consider versions of [Lv et al., 2017,
Wichrowska et al., 2017]:

⇛⇛⇛ Momentum terms mk← η1mk−1 +(1−η1)∇θ f f (θ k
f )

⇛⇛⇛ Relative gradient magnitudes vk← η2vk−1 +(1−η2)
(

∇θ f f (θ k
f )
)2

, where(
∇θ f f (θ k

f )
)2

is the element-wise square of ∇θ f f (θ k
f )

gk+1,hk+1←Mφ (∇θ f f (θ k
f ),m

k,vk,hk) (22)

42/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Recent Results [Metz et al., 2022]

Best cases

Worst cases

43/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Recent Results [Metz et al., 2022]

44/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Learning to Optimize with Zeroth-order Oracle [Ruan et al., 2020]

Learned optimizer with gradients:

θ
k+1
f ← θ

k
f +Mφ

(
∇θ f f (θ k

f )
)

(23)

Instead consider zeroth-order gradient estimates [Liu et al., 2018] with n random
Gaussian directions ui ∈ Rd , i = 1, . . . ,n, and a smoothing parameter µ > 0:

∇̂θ f f (θ k
f ) =

1
µn

n

∑
i=1

ui

(
f (θ k

f +µui)− f (θ k
f )
)
. (24)

Learned optimizer with gradient estimates:

θ
k+1
f ← θ

k
f +Mφ

(
∇̂θ f f (θ k

f )
)

(25)

We can also “optimize” for the random directions ui by modifying the diagonal of the
covariance matrix of the Gaussian.

45/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Learning to Optimize with Function Values [Chen et al., 2017]

Learned optimizer for function values:

θ
k+1
f ←Mφ

(
θ

k
f , f (θ k

f )
)

(26)

⇛⇛⇛ Useful for black-box optimization (like in hyperparameter optimization),

⇛⇛⇛ But RNN training requires first-order derivative of f w.r.t. θ f

⇛⇛⇛ Cannot use coordinate-wise RNN, needing a RNN per optimizee variable – no
parameter sharing between variables in θ f

⇛⇛⇛ For cheap f , might be better to use L2O with (zeroth-order) gradient estimates

⇛⇛⇛ Open question: weight sharing RNN that does not use gradient estimates

46/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation



Resources

⇛⇛⇛ Survey – Learning to Optimize: A Primer and A Benchmark [Chen et al., 2022]

⇛⇛⇛ Invited talk by Jascha Sohl-Dickstein (Google) at ICLR 2023:
⇛⇛⇛ Learned optimizers: why they’re the future, why they’re hard, and what they

can do now
⇛⇛⇛ https://iclr.cc/virtual/2023/invited-talk/14236

47/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation

https://iclr.cc/virtual/2023/invited-talk/14236


References I

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. In Advances in neural information processing systems, pages
3293–3301, 2014. URL https://papers.nips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch in mixed integer programming. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016. URL https://www.ekhalil.com/files/papers/KhaLebSonNemDil16.pdf.

Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning to run heuristics in tree search. In IJCAI, pages 659–666, 2017.
URL https://www.ijcai.org/proceedings/2017/0092.pdf.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In International Conference on Machine Learning, pages 344–353,
2018.

Martina Fischetti, Andrea Lodi, and Giulia Zarpellon. Learning milp resolution outcomes before reaching time-limit. In International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pages 275–291. Springer, 2019. URL
https://cerc-datascience.polymtl.ca/wp-content/uploads/2018/11/Technical-Report_DS4DM-2018-009.pdf.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning to cut. arXiv preprint arXiv:1906.04859, 2019.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial optimization with graph convolutional neural networks. In
Advances in Neural Information Processing Systems, pages 15580–15592, 2019. URL
https://proceedings.neurips.cc/paper_files/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Paper.pdf.

Prateek Gupta, Maxime Gasse, Elias B Khalil, M Pawan Kumar, Andrea Lodi, and Yoshua Bengio. Hybrid models for learning to branch. arXiv preprint
arXiv:2006.15212, 2020.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn
by gradient descent by gradient descent. In Advances in neural information processing systems, pages 3981–3989, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

48/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation

https://papers.nips.cc/paper_files/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://www.ekhalil.com/files/papers/KhaLebSonNemDil16.pdf
https://www.ijcai.org/proceedings/2017/0092.pdf
https://cerc-datascience.polymtl.ca/wp-content/uploads/2018/11/Technical-Report_DS4DM-2018-009.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Paper.pdf


References II

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein.
Learned optimizers that scale and generalize. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3751–3760.
JMLR. org, 2017.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer horizons. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2247–2255. JMLR. org, 2017.

Yangjun Ruan, Yuanhao Xiong, Sashank Reddi, Sanjiv Kumar, and Cho-Jui Hsieh. Learning to learn by zeroth-order oracle. ICLR, 2020.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al.
Velo: Training versatile learned optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022. URL https://arxiv.org/pdf/2211.09760.pdf.

S. Liu, J. Chen, P.-Y. Chen, and A. O. Hero. Zeroth-order online admm: Convergence analysis and applications. In Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, volume 84, pages 288–297, April 2018.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap, Matt Botvinick, and Nando de Freitas. Learning to learn without
gradient descent by gradient descent. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 748–756. JMLR. org,
2017.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang, Howard Heaton, Jialin Liu, and Wotao Yin. Learning to optimize: A primer and a benchmark.
The Journal of Machine Learning Research, 23(1):8562–8620, 2022. URL https://jmlr.org/papers/volume23/21-0308/21-0308.pdf.

49/49 Sanjeeb Dash / Parikshit Ram – Machine Learning for Combinatorial Optimization and Continuous Optimization © 2023 IBM Corporation

https://arxiv.org/pdf/2211.09760.pdf
https://jmlr.org/papers/volume23/21-0308/21-0308.pdf

	ML for Combinatorial Optimization
	ML for Continuous Optimization
	References

