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Lecture 4 Outline

� Brief review of IP to learn rules/knowledge graphs

� Bayesian Network structure learning

� Integer Programming Formulation to find optimal scores

� Latent variables and IP methods

� Numerical Experiments
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Bayesian Network Structure Learning

BayesianNetwork: Directedacyclic graph (DAG) representing conditional
probability relationships between variables
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P (X1, X2, X3, X4) = P (X4|X1)P (X3|X1, X2)P (X2|X1)P (X1)

BNSL Problem - Learn DAG from data:
DP methods: Koivisto, Sood ’04, Silander, Myllymäki ’06
A* search: Yuan, Malone ’13
Branch-and-bound: Campos, Ji ’11
IP based solver GOBNILP: Bartlett, Cussens ’13, ’17
GOBNILP is a state-of-the-art method: Malone et. al. ’17
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Causal Graphs/Causal BN

�GraphicalModelswheredirectededges represent causal relationships� DAG encodes structural equations

Directed Acyclic Graph (Linear) Structural equations

⇔


xA = ϵA
xB = ϵB
xC = bCAxA + bCExE + ϵC
xD = bDBxB + bDExE + ϵD
xE = ϵE

In a BN,X → Y → Z andX ← Y ← Z are indistinguishable.
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Creating causal graphs
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Score decompositions for BNSL

Score of DAG is sum of scores of “in-stars” (inward directed star)
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Score calculation

Score of each“in-star” is calculated from data
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MIP for score based approach

MIP has one variable per in-star, equations choosing one in-star per
node, and cluster inequalities preventing cycles.
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Opt. formulations

Notation: Node set - V = {1, . . . , n}, P (i) = set of parent sets of i.

MIP (parent set variables):

max
∑
i∈V

∑
P∈P (i)

ci,Pzi,P

∑
P∈P (i)

zi,P = 1, ∀i ∈ V

∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V ∗

zi,P ∈ {0, 1}

Jaakkola, Sontag, Globerson, Meila ’10: cluster constraints(*)
Bartlett, Cussens ’13, 17: IP + software (GOBNILP)
Grotschel, Junger, Reinelt ’85: Acyclic subgraph polytope
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Latent Variables

Goal: Learn causal network structures in the presence of latent vars.
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We use ancestral acyclic directed mixed graphs (with directed +
bidirected edges) as models of data with latent confounders.

Chen, Dash, Gao ’21: MIP formulation & first exact score-based
method to find optimal AADMG for continuous Gaussian variables.
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Ancestral graphs (AGs)

� DAGs are not closed under marginalization!

Ancestral graphs (Richardson and Spirtes ’02)

� Include all DAGs and are closed
under marginalization� Properties:
No directed cycles
(a→ b→ . . .→ a)
No almost directed cycles
(a↔ b→ c→ . . .→ a)
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Forbidden structures
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Learning methods

Constraint-based methods:� Apply conditional independence test on the data to infer the graph
structure: FCI (Sprites et al., ’00), cFCI (Ramsey et al., ’12)

Score-based methods:�Optimize a scoring criterion thatmeasures the likelihoodof the graph:
GSMAG (Triantafillou and Tsamardinos, ’16)

Hybrid methods:� Use both a scoring criterion and conditional independence tests:
M3HC (Tsirlis et al., ’18), SPo (Bernstein et al., ’20), CCHM (Chobtham
and Constantinou, ’20)

Current score-based and hybrid methods are all greedy or local search
algorithms!
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Scoring a DMG

� The BIC score (Schwarz ’78) for graph G is given by

BICG = 2 ln(lG(Σ̂))− ln(N )(2|V | + |E|)

� The maximum log-likelihood ln(lG(Σ̂)) can be decomposed by c-
components in G (Nowzohour et al., ’17)

ln(lG(Σ̂)) = −
N

2

∑
D∈D

[
|D| ln(2π) + log(

|Σ̂GD
|∏

j∈paG(D) σ̂
2
Dj

)+

N − 1

N
tr(Σ̂−1

GD
SD − |paG(D) \D|)

]

district = component defined by bidirected edges
c-component = district + in-edges per node in district
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Decomposition into c-components

Ancestral ADMG Districts

c-components

� We obtain a (BIC) score-maximizing ancestral ADMG for a set of
continuous variables that follow a multivariate Gaussian distribution.
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Score decomposition for AADMG

Score of AADMG is sum of scores of c-components
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Approach

Our work: Learn an AADMG with maximum score from c-components
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MIP formulation

Let C be set of all c-components, and let D(C) be the district of a c-
component C.

MIP to find optimal AADMG:

max
∑
c∈C

sCzC∑
C:i∈D(C)

zC = 1, ∀i ∈ V

G(z) has no directed and almost directed cycles
zC ∈ {0, 1}
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Cutting planes to avoid cycles

Cluster Inequalities:∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V
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∑

C:i↔j∈D(C) zC)∑
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∑
P :P∩S=∅

zv,P +
∑

P 1:P 1∩S=∅
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zi,j,P 1,P 2 ≥ wi,j
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Cutting planes generation

� Karger’s (’93) random contraction algorithm for min-cut problems:
Randomly contract edge ij with probability ∝ edge weight

� Separation heuristic for cluster inequalities:
- Let µk(S) denote the LHS of the cluster inequality at iteration k and

wk
ij = µk({i}) + µk({j})− µk({i, j}), ∀i, j

- At iteration k, randomly contract edge ij with probability ∝ wk
ij

- Remove nodes i and j, create a pseudo-node i′ and replace all
occurrences of i and j in the original graph by the pseudo-node
- Repeat until µk({i}) < 1 for some i⇒ a violated cluster inequality

� Similar separation heuristic for bi-cluster inequalities
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Numerical Experiments
• Test set 1:

1. Randomly generated DAGs with 20 nodes
2. l = 2,4,6 variables set to be latent
3. d = remaining observed variables
4. A sample of N = 1000/10, 000 realizations of observed variables

per instance

• Candidate c-components:

1. Single-node districts with up to three parents
2. Two-node districts with up to one parent each node

• Compared methods:

1. AGIP: our IP model
2. DAGIP: our IP model with only single-node districts
3. M3HC: a greedy hybrid method by Tsirlis et al. (2018)
4. FCI: an exact constraint-based method by Sprites et al. (2000)
5. cFCI: an exact constraint-based method by Ramsey et al. (2012)
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Quality of formulation

20-node graphs; d = number of observed nodes, l = number of latent
variables (removed from graph),N = number of samples.

(d, l,N )
Avg # bin vars Avg # bin vars Avg pruning Avg root Avg soln.
before pruning after pruning time (s) gap (%) time (s)

(18, 2, 1000) 59229 4116 19.1 0.65 60.4
(16, 4, 1000) 39816 3590 13.6 0.43 41.0
(14, 6, 1000) 20671 1788 3.9 0.54 8.9
(18, 2, 10000) 59229 9038 33.0 0.67 323.2
(16, 4, 10000) 39816 7378 21.4 0.53 215.4
(14, 6, 10000) 20671 3786 6.4 0.56 47.2
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Results for varying number of latent vars.

d = 18, l = 2, 4, 6,N = 10, 000,
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Current work

� Find optimal bow-free/arid graphs (supersets of AADMGs) using MIP

Use BSNL formulation, but extra variables for c-components with > 1
node districts and no bows

MIP (parent set variables):

max
∑
i∈V

∑
P∈P (i)

ci,Pzi,P

∑
P∈P (i)

zi,P = 1, ∀i ∈ V

∑
i∈S,P∩S=∅

zi,P ≥ 1, ∀S ⊆ V ∗

zi,P ∈ {0, 1}
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Sparse instances

Dataset Ground Truth AADMG Bow-free Bhattacharya

0 -17741.6 -17741.6 -17741.6 -17765.1
1 -17508.5 -17508.5 -17508.5 -17511.9
2 -17872.5 -17871.2 -17871.2 -17872.5
3 -19055.6 -19093.6 -19055.6 -19123.7
4 -17888.1 -17884.1 -17881.6 -17908.4
5 -18584.9 -18595.5 -18584.9 -18625.4
6 -17791.2 -17790.1 -17789.5 -17795.6
7 -18964.8 -19010.8 -18964.8 -20438.8
8 -17562.1 -17562.1 -17562.1 -17565.6
9 -17627.9 -17655.9 -17627.9 -17681.6

Scores for sparse randomly generated datasets
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Method Precision Recall
skeleton dir. bidir. skeleton dir bdir

AADMG 0.906 0.711 0.450 0.950 0.818 0.283
Bow-free 0.969 0.812 0.633 0.975 0.873 0.517
Bhattacharya 0.830 0.749 0.179 0.949 0.774 0.383

Average results
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Medium density instances

Dataset Ground Truth AADMG Bow-free Bhattacharya LP-heuristic

0 -19057.4 -19169.2 -19117.4 -19071.4 -19061.3
1 -19802.3 -20082.1 -19916.3 -19830.9 -19825.3
2 -20606.4 -21074.8 -20857.5 -20613.9 -20623.2
3 -21178.7 -21332.9 -21267.9 -21207.7 -21190.7
4 -20865.8 -20993.5 -20962.1 -20876.5 -20870.1
5 -18846.5 -19031.6 -18936.4 -18848.3 -18855.4
6 -21268.7 -21405.1 -21347.0 -21716.6 -21288.2
7 -18906.2 -18924.9 -18921.7 -18927.6 -18908.4
8 -22152.7 -22517.5 -22320.3 -22226.1 -22189.1
9 -21059.0 -21118.6 -21100.4 -21110.3 -21070.5
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Method Precision Recall
skeleton dir. bidir. skeleton dir bdir

AADMG 0.840 0.442 0.100 0.693 0.488 0.050
Bow-free 0.837 0.336 0.083 0.732 0.383 0.034
Bhattacharya 0.799 0.641 0.388 0.946 0.783 0.398
LP-heuristic 0.812 0.424 0.367 0.858 0.589 0.074
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Open questions

� How does one deal with the exponentially many variables

� Find valid inequalities for bounded indegree acyclic graphs

Cussens, Jarvisalo, Korhonen, Bartlett ’17: detailed studyof associated
polytopes
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