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Lecture 2 Outline

� Rule-based regression

� Knowledge graphs
- Rule-based methods
- Embedding-based methods

� Linear Programming Formulation
- Column Generation Technique

� Results
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Regression

• Features: X1, . . . , Xm

• Data: {(xi; yi) : i ∈ 1, 2, . . . , n} where xi ∈ Rm.

• Label yi ∈ R ({0, 1} for logistic regression)

• FeatureXj is either numeric or categorical.

• Goal: Find function f such that yi ≈ f (xi).
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Regression contd.

Linear regression: f ≡ c1X1 + c2X2 + · · · + cmXm

Rule-basedLinear regression: Addnew features/variables corresponding
to rules
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Related column generation results

� Rule-based Linear regression: Eckstein, Kagawa, Goldberg ’17, ’19

� Rule-based Logistic regression: Wei, Dash, Gao, Günlük ’19

◃ Goal: Given featuresXj, find function f (X) = β0 +
∑m

j=1 βjXj such

P (yi = 1 | xi) ≈
1

1 + e−f(xi)

- Classify new data point xi with label 1 if 1

1+e−f(xi)
> 1

2, 0 otherwise.

◃ Find f (X) by minimizing the negative log-likelihood on the training
data (use ℓ1 regularization for sparsity)

min
β

1

n

n∑
i=1

[
log(1 + e(−1)yi

∑
βjxij)

]
+

m∑
j=0

λj|βj|.
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Rule-based Logistic regression..

min
β

1

n

n∑
i=1

[
log(1 + e(−1)yi

∑
βjxij)

]
+

t∑
j=0

λj|βj|.

Consider a “missing” feature k (βk = 0). To find the effect of increasing
βk, compute partial derivative of ith objective term w.r.t. increasing βk

(−1)yi aik e
(−1)yif(xi)

1 + e(−1)yif(xi)
⇒

Partial derivative w.r.t. increasing βk =

1

n

n∑
i=1

riaik + λk.

ŷ(xi) is the predicted value for data point xi, and ri = ŷ(xi)− yi
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Pricing IP

min
𝑧,𝑎

±
1

𝑁
෍

𝑖=1

𝑁

𝑟𝑖𝑎𝑖 + 𝜆0 + 𝜆1෍

𝑗=1

𝑑

𝑧𝑗

𝑎𝑖 + 𝑧𝑗 ≤ 1, 𝑖: 𝑦𝑖 = 1, 𝑗: 𝑥𝑖𝑗 = 0

𝑎𝑖 + ෍

𝑗:𝑥𝑖𝑗=0

𝑧𝑗 ≥ 1, 𝑎𝑖 ≥ 0, 𝑖: 𝑦𝑖 = 0

𝑧𝑗 ∈ 0,1 , 𝑗 = 1,… , 𝑑

whether to select feature j

reduced cost of clause incl. complexity penalty

clause
acts as 

conjunction
of features
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Pricing IP Contd.

All data is assumed to be binary and in the form (xi, yi) ∈ {0, 1}m×{0, 1}
for logistic regression. Non-binary x is binarized as in lecture 1.
- xij is the value of xi for feature j.
- ai, zj are binary variables; zj is 1 iff feature j is chosen to be part of a
rule/clause
- ai is the value given by chosen rule/clause to data point i

The± term in the objectivemeans we solve two optimization problems
to get the best clauses for increasing/decreasing βk from 0.
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Results

Pima FICO

magic musk
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Results

method LRR LRRN RuleFit RuleFitN GBM SVM

logistic regression mean rank 4.1 3.6 4.8 3.6 5.3 4.0

linear regression mean rank 4.9 3.0 4.5 3.5 3.4 5.0

Logistic/Linear Rule Regression with CG (LRR, LRRN) is highly competitive when tuned to maximize 
performance and uses 2-4 times fewer rules than RuleFit [Friedman & Popescu, 2008]
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Knowledge Graph completion

KnowledgeGraph (KG):Directed node/edge-labeledmultigraph; each
edge is a “fact”; edge labels represent binary relations between nodes.

Example: (a, r1, b) is a fact or r1(a, b) is true
a, b, c, d could be individuals,
r, r1, r2 could son of, brother of, related to

a

b

d

c

r

r3r1

r2

r2

r1

Knowledge graphs often have missing (and incorrect) facts.

KG completion problem:
Find missing facts e.g., (b, brother of, a), (c, brother of, a)

Popular methods: Rule based & Embedding based
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Rules

Example: (X, son of, Y ) ∧ (Y, son of, Z) → (X, grandson of, Y )

KG Completion Problem: Answer query (a, r, ?)

Standard Approach:

1. Learn rule-based function fr(X,Y ) that gives high scores to likely
facts (X, r, Y ) where X,Y are nodes in the graph, and r is an edge-
label

2. Answer query (a, r, ?)by findingx such that fr(a, x)has highest score.

3. If the correct answer is b, measure accuracybyaverage rank/reciprocal
rank of b (MR/MRR)
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Prior work

Kok, Domingos ’05, Richardson, Domingos ’06 – Markov Logic Networks
Yang, Yang, Cohen ’17 (NeuralLP) – Neuro-symbolic methods
Rochstätel, Riedel ’17 (NTP) – „
Sadeghian, Armandpour, Ding, Wang ’19 (DRUM) – „
Evans, Grefenstette ’18 – Differential ILP
Das et al. ’18 (Minerva) – Reinforcement Learning
Qu et. al. ’21 (RNNLogic) – RNN + Probabilistic methods
Meilicke et. al. ’19 (AnyBURL) – Data mining
Teru, Denis, Hamilton ‘20 (GraIL) – Subgraph reasoning

Advantages: (1) Inductive reasoning is possible.
(2) Interpretable models when few rules are generated.

Drawbacks: (1) Lower levels of accuracy compared to embedding methods
(2) Current methods do not scale
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Embedding based methods

Approach: Find va ∈ Rk for each node a and a mapping Tr : Rk → Rk

for each relation r such that the score ||Tr(va) − vb|| is small for each
fact (a, r, b).

Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko ’13 (TransE)
Yang, Yih, He, Gao, Deng ’15 (DistMult)
Trouillon, Welbl, Riedel, Gaussier, Bouchard ’16 (ComplEx)
Dettmers, Pasquale, Pontus, Riedel ’18 (ConvE)
Lacroix, Usunier, Obozinski ’18 (ComplEx-N3)
Sun, Deng, Nie, Tang ’19 (RotatE)

Advantages: (1) Reasonable accuracy
(2) Scalable

Drawbacks: (1) Not effective for inductive reasoning
(2) Model is not interpretable.
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Our work

Goals: Develop a scalable, rule-learner returning compact rule sets

- Interpretability is an explicit goal, andwe return low-complexity rules

- We trade off complexity versus accuracy

- Scalability is attained by solving linear programming models instead
of non-convex models
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Our approach

Approach: Learn few (FOL) rules R1, . . . , Rp and positive weights
w1, . . . , wp where each Ri has the form

r1(X,X1) ∧ r2(X1, X2) ∧ · · · ∧ rl(Xl−1, Y ) → r(X,Y )

where r1, . . . , rl are relations in G.

Length of this rule is l; left-hand-side is the clause Ci : V × V → {0, 1}

The learned prediction/scoring function fr : V × V → R+ for r is:

fr(X,Y ) =

p∑
i=1

wiCi(X,Y ) ∀X,Y ∈ V
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Details

e

g

f

h

r3r1

r2

r2

r1

i

j

r

r1

a

b

d

c

r

r3r1

r2

r2

r3

r3

r

r3

r3

r

edge 𝑟1 ∧ 𝑟2 ∧ 𝑟3 𝑟

(a,d) 1 1

(a,e) 1 1

(f,c) 0 1

(g,f) 1 1

(i,f) 1 1

(i,j) 0 1

(e,f) 1 0

(a,i) 1 0

(e,j) 1 0

r

r

positive instances:
edges in KG = 𝐸𝑟

negative instances:
non-edges (sample)

Rule 𝑟1 𝑋, 𝑋1 ∧ 𝑟2 𝑋1, 𝑋2 ∧ 𝑟3 𝑋2, 𝑌 → 𝑟 𝑋, 𝑌 and 
associated clause-edge vectorKG:

a-j are entities
r, r1, r2, r3 are relations  

𝑟1 𝑎, 𝑏 ∧ 𝑟2 𝑏, 𝑐 ∧ 𝑟3 𝑐, 𝑑 is true and
𝑟 𝑎, 𝑑 is true 

𝐶1 𝑋, 𝑌

𝑎𝑖1
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LP to learn KG rules

min
𝑤,𝜉

෍

𝑖:𝑦𝑖=1

𝜉𝑖 + τ෍

𝑘∈𝐾

neg𝑘𝑤𝑘

𝜉𝑖 + σ𝑘∈𝐾 𝑎𝑖𝑘𝑤𝑘 ≥ 1, 𝜉𝑖≥ 0, (𝑡𝑖, ℎ𝑖) ∈ 𝐸𝑟

෍

𝑘∈𝐾

𝑐𝑘𝑤𝑘 ≤ 𝐶

𝑤𝑘 ∈ 0,1 , 𝑘 ∈ 𝐾

loss on positive instances loss on negative instances

cover positives

complexity bound

select clause k or not

Minimize error for weighted collection of rules:

value of scoring fn.
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Model details

- Er = set edges labeled by r, and (ti, hi)= th edge in Er

- wk variable gives weight for rule k; wk > 0 implies rule k is chosen
- aik is a constant = Ck(ti, hi)
- ck is a constant = 1+ rule length
- C is a parameter bounding weighted complexity of chosen rules
- τ is a parameter, negk is a constant

Modeling – Use all positive facts for a relation + sample some negative
facts for the LP model

Algorithmic issues – Use simple shortest path heuristics to find
relational paths, and associated rules – Iterate over different values of
tau and complexity

Code available at: https://github.com/IBM/LPRules
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Column generation

Step 0 – Fix an initial complexity and tau value

Step 1 – Use simple heuristics to create an initial collection of rules

Step 2 – Set up LP model and solve it

Step 3 – Obtain dual values of LP model

Step 4 – Dual values indicate which facts are “well-covered” andwhich
are not. Heuristically generate new rules that “cover” facts that are not
well-covered.

Step 5 – Repeat Steps 2 – 4 till termination criterion
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Sizes of datasets

Neuro-symbolic methods take a long time on FB15k-237 and cannot
handle YAGO3-10

20



Experiments (accuracy)

†We could not run RNNLogic on FB15k-237 and report numbers taken
from Qu et al. (2021)
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Running time + number of rules

Avg number of rules per relation and wall clock running time on a 60
core machine
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Accuracy versus Complexity tradeoff

Change in MRR with change in average rules per relation
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LPRules + rules from other codes

MRR values using rules generated by AnyBURL and RNNLogic
(experiments A-D)

A – Use other rule-based code
B – Take rules and weights and use in our prediction function
C – Recalculate weights using complexity bound
D – Add our rules and recalculate weights
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