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Single-level Optimization Problem

min
θ∈Rd

f (θ) (1)

subject to

P(θ)≥ 0 (2)

Q(θ) = 0 (3)

Terminology

⇛⇛⇛ θ ∈ Rd are the d decision variables

⇛⇛⇛ f : Rd → R is the objective

⇛⇛⇛ P : Rd → Rp are the p inequality constraints

⇛⇛⇛ Q : Rd → Rq are the q equality constraints

⇛⇛⇛ Ωθ ≜ {θ ∈ Rd : P(θ)≥ 0,Q(θ) = 0} is the constraint set
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Optimization in Machine Learning

Elements defining objectives/constraints in ML

⇛⇛⇛ Data – {ξi, i ∈ [n]}, [n]≜ {1, . . . ,n}
⇛⇛⇛ Samples ξi ∼ µ , for a data distribution µ

⇛⇛⇛ ξi ≜ (xi,yi) ∈ (Rm× [k]) for k-class classification
⇛⇛⇛ ξi ≜ (xi,yi) ∈ (Rm×R) for regression
⇛⇛⇛ ξi ∈ Rm for unsupervised learning{

ξi ≜ (xi,yi), i ∈ [n]
}

xi ∈ Rm

yi ∈ [k]/R
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Optimization in Machine Learning

Elements defining objectives/constraints in ML

⇛⇛⇛ Data – {ξi, i ∈ [n]}
⇛⇛⇛ Model Mθ – Defines the decision variables θ

⇛⇛⇛ Linear models: θ are the weights of the linear model
⇛⇛⇛ Neural networks: θ are the weights of all the layers in the neural network

Mθ

θ ∈Θ⊆ Rm

Mθ

W1 W2 WL−1 WL

θ ≜ {W1,W2, · · · ,WL−1,WL} ∈Θ
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Optimization in Machine Learning

⇛⇛⇛ Data – {ξi, i ∈ [n]}
⇛⇛⇛ Model Mθ – Defines the decision variables θ

⇛⇛⇛ Loss function ℓ

⇛⇛⇛ Mis-classification loss in k-class classification→→→−∑l∈[k] I(y = l) logMθ (x)[l]
⇛⇛⇛ Distortion loss in regression→→→ (y−Mθ (x))2

⇛⇛⇛ (Negative) Likelihood in density estimation→→→− logMθ (x)
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Optimization in Machine Learning

⇛⇛⇛ Data – {ξi, i ∈ [n]}
⇛⇛⇛ Model Mθ – Defines the decision variables θ

⇛⇛⇛ Loss function ℓ

x

y

Mθ

Mθ (x)

ℓ(y,Mθ (x))
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Common Optimization in Machine Learning

Optimization type:

⇛⇛⇛ Many continuous, unconstrained

min
θ∈Rd

f (θ) (4)
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Linear Regression via Empirical Risk Minimization (ERM)

⇛⇛⇛ Data→→→ {ξi, i ∈ [n]}, with ξi ≜ (xi,yi),xi ∈ Rm,
yi ∈ R

⇛⇛⇛ Model→→→ Mθ (x)≜ θ⊤x,θ ∈ Rd and d = m

⇛⇛⇛ Loss between true y and predicted y′ →→→
ℓ(y,y′)≜ (y− y′)2

Final objective

f (θ)≜
1
n ∑

i∈[n]
ℓ(yi,θ

⊤xi)+ρ∥θ∥2
2. (5)

min
θ∈Rd

f (θ) (6)

⇛⇛⇛ Continuous

⇛⇛⇛ Unconstrained

Mθ

θ ∈Θ⊆ Rm
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Neural Network via Empirical Risk Minimization (ERM)

⇛⇛⇛ Data→→→ {ξi, i ∈ [n]}, with ξi ≜ (xi,yi),xi ∈ Rm,
yi ∈ R

⇛⇛⇛ Model→→→ Mθ : Rm→ R,θ ∈ Rd , d is the number
of (learnable) parameters in the network

⇛⇛⇛ Loss between true y and predicted y′ →→→
ℓ(y,y′)≜ (y− y′)2

Final objective

f (θ)≜
1
n ∑

i∈[n]
ℓ(yi,Mθ (x)). (7)

Mθ (x)≜WL ·σ(WL−1 ·σ(· · ·W2 ·σ(W1x) · · ·)),
θ ≜ [W1,W2, . . . ,WL−1,WL]

(8)

min
θ∈Rd

f (θ) (9)

⇛⇛⇛ Continuous

⇛⇛⇛ Unconstrained

⇛⇛⇛ Nonlinear because of
activation σ

⇛⇛⇛ Sigmoid σ(a) = 1/1+e−a

⇛⇛⇛ Tanh σ(a) = ea−e−a/ea+e−a

⇛⇛⇛ ReLU σ(a) = max{a,0}

Mθ
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Multi-task Linear Regression via ERM

⇛⇛⇛ Data for T (related) “tasks”→→→
{ξ (t)

i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]}
for each t ∈ [T ] {

ξ
(1)
i , i ∈ [n]

}
x(1)i

y(1)i

{
ξ
(2)
i , i ∈ [n]

}
x(2)i

y(2)i

{
ξ
(3)
i , i ∈ [n]

}
x(3)i

y(3)i

12/58 Sanjeeb Dash / Parikshit Ram – Bi-level Optimization and Continuous Bi-level Optimization Problems in Machine Learning © 2023 IBM Corporation



Multi-task Linear Regression via ERM

⇛⇛⇛ Data for T (related) “tasks”→→→
{ξ (t)

i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]}
for each t ∈ [T ]

⇛⇛⇛ Model→→→ Mθ (x, t)≜ w(t)⊤φ · x
⇛⇛⇛ θ ≜ [φ ,{wt , t ∈ [T ]}]
⇛⇛⇛ Shared→→→ φ ∈ Rr×m

⇛⇛⇛ Per-task→→→ w(t) ∈ Rr ∀t ∈ [T ]
⇛⇛⇛ d = (m+T )r

Mθ

φ w(1) w(2) w(3)

θ ≜
{

φ ,w(1),w(2),w(3)
}
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Multi-task Linear Regression via ERM

⇛⇛⇛ Data for T (related) “tasks”→→→ {ξ (t)
i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]} for each t ∈ [T ]

⇛⇛⇛ Model→→→ Mθ (x, t)≜ w(t)⊤φ · x, θ ≜ [φ ,{wt , t ∈ [T ]}]
⇛⇛⇛ Loss between true y and predicted y′ →→→ ℓ(y,y′)≜ (y− y′)2

Final objective

f (θ)≜ ∑
t∈[T ]

1
n(t) ∑

i∈[n(t)]
ℓ(y(t)i ,w(t)⊤

φ · x(t)i )+ρ ∑
t∈[T ]
∥w(t)∥2

2 +ρ
′∥φ∥2

F . (10)
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Multi-task Neural Network via ERM

⇛⇛⇛ Data for T (related) “tasks”→→→ {ξ (t)
i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]} for each t ∈ [T ]

⇛⇛⇛ Model→→→ Mθ (x, t)≜ M
ω(t)(Mφ (x))

⇛⇛⇛ θ ≜
[
φ ,{ω(t), t ∈ [T ]}

]
⇛⇛⇛ Shared φ ∈ Rd1 , Mφ : Rm→ Rr

⇛⇛⇛ Per-task ω(t) ∈ Rd2 ∀t ∈ [T ], M
ω(t) : Rr→ R

⇛⇛⇛ d = d1 +d2

⇛⇛⇛ Loss between true y and predicted y′ →→→ ℓ(y,y′)≜ (y− y′)2

Final objective

f (θ)≜ ∑
t∈[T ]

1
n(t) ∑

i∈[n(t)]
ℓ
(

y(t)i ,M
ω(t)

(
Mφ

(
x(t)i

)))
. (11)

Mφ (x)≜ σ(WL ·σ(· · ·W2 ·σ(W1x) · · ·)), φ ≜ [W1,W2, . . . ,WL−1,WL]

M
ω(t)(x)≜ σ(w(t)

l ·σ(w(t)
L−1 ·σ(· · ·w(t)

2 ·σ(w(t)
1 x) · · ·))), ω

(t) ≜ [w(t)
1 , . . . ,w(t)

l ]

usually l≪ L

(12)
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Solution with Gradient Descent

Gradient based continuous optimization algorithm:

min
θ∈Rd

f (θ) (13)

Algorithm 1 Gradient descent

Input: Initialization θ 0, initial learning rate α0

for k = 1,2, · · · ,K do
θ k+1← θ k−αk ·hk // example hk ≜ ∇θ f (θ)|

θ=θ k

Learning rate update αk→ αk+1 // example αk ∝ α0/ck

return θ K+1
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Stochastic Gradient Descent

Stochastic objective:

f (θ)≜ Eξ∼µ f(θ ;ξ )≈ 1
n ∑

i∈[n]
f(θ ;ξi) (14)

Stochastic gradient estimate:

hk← ∇θ f(θ ;ξ
k)
∣∣
θ=θ k

≜
1
|Bk| ∑

i∈Bk⊂[n]
∇θ ℓ(yi,Mθ (xi))

∣∣∣∣∣
θ=θ k

(15)

x

y

Mθ

Mθ (x)

ℓ(y,Mθ (x))

θ 0 θ 1 θ 2 θ k θ k+1 θ Kh0 h1 hk

17/58 Sanjeeb Dash / Parikshit Ram – Bi-level Optimization and Continuous Bi-level Optimization Problems in Machine Learning © 2023 IBM Corporation



Common Constrained Optimization in Machine Learning

min
θ∈Θ⊂Rd

f (θ) (16)

Common constraint types:

⇛⇛⇛ Rank constraints

⇛⇛⇛ Integrality constraints

⇛⇛⇛ Simplex constraints

⇛⇛⇛ Orthogonality constraints
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Principal Component Analysis

{
ξi ≜ xi ∈ Rm, i ∈ [n]

}
{zi ∈ Rr, i ∈ [n]}

⇛⇛⇛ Learn a projection matrix V ∈ Rm×r

⇛⇛⇛ Minimize distortion (≡ preserve
variance) with smaller number of
features

⇛⇛⇛ Orthogonality constraint on V – V⊤V = I

min
θ

f (θ)≜ min
V∈Rm×r,
{zi∈Rr, i∈[n]}

∥xi−V zi∥2
2 (17)

subject to

V⊤V = Ir (18)

θ ≜ [V,{zi, i ∈ [n]}] (19)
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Discrete Clustering
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Discrete Clustering

Clustering data {xi, i ∈ [n]} for a given pairwise affinity matrix A ∈ Rn×n:

min
θ

f (θ)≜ min
ci∈{0,1}k,i∈[n]

∑
i, j∈[n]

Ai j∥ci− c j∥2
2 (20)

subject to

1⊤k ci = 1∀i ∈ [n] (21)

rank(C) = k,C ≜ [ci, i ∈ [n]] ∈ {0,1}k×n (22)

⇛⇛⇛ Learn cluster
assignments

⇛⇛⇛ Integrality cst

⇛⇛⇛ Simplex cst

⇛⇛⇛ Rank cst

Special cases

⇛⇛⇛ Euclidean clustering: Ai j =−∥xi− x j∥2
2

⇛⇛⇛ Kernel clustering: Ai j = κ(xi,x j) for some kernel function κ : Rm×Rm→ R≥0

⇛⇛⇛ Spectral/graph clustering: Ai j = I((i, j) ∈ E) – that is, edge (i, j) in the graph G =
(V,E) with vertex set V = [n] and edge set E
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Neural Network Pruning & Compression

min
θ∈Θ

f (θ)≜ min
m∈{0,1}d ,

φ∈Rd

∑
i∈[n]

ℓ(yi,Mm⊙φ (xi)) (23)

subject to

1⊤d m = αd (24)

θ ≜ [m,φ ] ∈ R2d (25)

Model Pruning

⇛⇛⇛ Remove redundant
weights

⇛⇛⇛ Compress model

⇛⇛⇛ Speed up inference

⇛⇛⇛ Compression factor
α ≤ 0.1

Constraints

⇛⇛⇛ Integrality cst

⇛⇛⇛ Simplex cst
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Adversarial Attacks [Szegedy et al., 2013]

Problem. Neural networks (trained to high accuracy) can be easily “attacked” –
Models manipulated to make desired prediction with imperceptible perturbation

Solution. Train models that are “robust” to adversarial perturbations
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Adversarially Robust Learning

Problem. Neural networks (trained to high accuracy) can be easily “attacked” –
Models manipulated to make desired prediction with imperceptible perturbation
Solution. Train models that are “robust” to adversarial perturbations

24/58 Sanjeeb Dash / Parikshit Ram – Bi-level Optimization and Continuous Bi-level Optimization Problems in Machine Learning © 2023 IBM Corporation



Adversarially Robust Learning

Solution. Train models that are “robust” to adversarial perturbations

min
φ

max
δi,∥δi∥∞≤ε,i∈[n]

∑
i∈[n]

ℓ(yi,Mφ (xi +δi)) (26)

θ ≜ [φ ,{δi, i ∈ [n]}] (27)
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Gradient Descent with Constraints

Handling constraints with gradient-based continuous optimization algorithm:

min
θ∈Θ⊂Rd

f (θ) (28)

Algorithm 2 Projected gradient descent

Input: Initialization θ 0, initial learning rate α0

for k = 1,2, · · · ,K do
θ k+1←PΘ

(
θ k−αk ·hk

)
// closed-form projection

Learning rate update αk→ αk+1

return θ K+1

PΘ(θ) ∈ argmin
ϑ∈Θ

∥θ −ϑ∥ (29)

θ 0
θ̃ 1 θ 1

θ̃ 2 θ 2 θ k−1 θ̃ k θ k θ Kh0 PΘ(·) h1 PΘ(·) hk PΘ(·)
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Bi-level Formulation

min
θ∈Θ⊆Rdu ,φ

fu(θ ,φ) (30)

subject to Pu(θ ,φ)≥ 0 (31)

φ ∈ S(θ)≜ arg min
φ∈Φ⊆Rdl

fl(θ ,φ) (32)

subject to Pl(θ ,φ)≥ 0 (33)

Terminology

⇛⇛⇛ minθ ,φ fu(θ ,φ) is called the upper level (UL) problem or the leader’s problem

⇛⇛⇛ minφ fl(θ ,φ) is called the lower level (LL) problem or the follower’s problem
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Bi-level Formulation

min
θ∈Θ⊆Rdu ,φ

fu(θ ,φ)

subject to Pu(θ ,φ)≥ 0

φ ∈ S(θ)≜ arg min
φ∈Φ⊆Rdl

fl(θ ,φ)

subject to Pl(θ ,φ)≥ 0

Terminology

⇛⇛⇛ fu : Rdu×Rdl is the UL objective

⇛⇛⇛ fl : Rdu×Rdl is the LL objective

⇛⇛⇛ θ ∈Θ⊆ Rdu are the UL decision variables

⇛⇛⇛ φ ∈Φ⊆ Rdl are the LL decision variables
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Bi-level Formulation

min
θ∈Θ⊆Rdu ,φ

fu(θ ,φ)

subject to Pu(θ ,φ)≥ 0

φ ∈ S(θ)≜ arg min
φ∈Φ⊆Rdl

fl(θ ,φ)

subject to Pl(θ ,φ)≥ 0

Terminology

⇛⇛⇛ Pu : Rdu×Rdl → Rpu are the UL inequality constraints

⇛⇛⇛ Pl : Rdu×Rdl → Rpl are the LL inequality constraints

⇛⇛⇛ S : Rdu →S ⊂ Rdl is a point-to-set mapping of the LL optimal solutions
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Bi-level Formulation

min
θ∈Θ⊆Rdu ,φ

fu(θ ,φ)

subject to Pu(θ ,φ)≥ 0

φ ∈ S(θ)≜ arg min
φ∈Φ⊆Rdl

fl(θ ,φ)

subject to Pl(θ ,φ)≥ 0

Terminology

⇛⇛⇛ Ω ≜ {(θ ,φ) ∈Θ×Φ : Pu(θ ,φ)≥ 0,Pl(θ ,φ)≥ 0} is the shared constraint set

⇛⇛⇛ ΩΘ ≜ {θ ∈Θ : ∃φ ∈Φ,(θ ,φ) ∈Ω} is the projection of the shared constraint set onto
the θ -space

⇛⇛⇛ Coupling constraints: UL constraints Pu that explicitly depend on the LL variable φ

⇛⇛⇛ Linking variables: UL variables θ that explicitly appear in the LL constraints Pl
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Alternate Bi-level Formulation

min
θ∈Θ⊆Rdu ,
φ∈Φ⊆Rdl

fu(θ ,φ) (34)

subject to

Pu(θ ,φ)≥ 0 (35)

Pl(θ ,φ)≥ 0 (36)

fl(θ ,φ)≤ ν(θ) (37)

ν(θ)≜ min
φ∈Φ
{ fl(θ ,φ) : Pl(θ ,φ)≥ 0} (38)

Terminology

⇛⇛⇛ ν : Rdu → R is called the Optimal Value Function
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Example: Classical Pricing Problem

⇛⇛⇛ Leader/UL
⇛⇛⇛ Decision variables: Price(s) of certain good(s)
⇛⇛⇛ Objective: Maximize revenue from selling goods

⇛⇛⇛ Follower/LL
⇛⇛⇛ Decision variables: Amount spent on purchasing good(s)
⇛⇛⇛ Objective: Maximize utility

⇛⇛⇛ Hierarchical structure
⇛⇛⇛ UL objective depends on the optimal LL variable
⇛⇛⇛ LL decision depends on the UL variables
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Example: Classical Pricing Problem

θ

φ

fu

fl →

fl →

← fl

← fl
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Example: Classical Pricing Problem

min
θ ,φ≜{φ1,φ2}

−θ
⊤

φ1 ≡ max
θ ,φ≜{φ1,φ2}

θ
⊤

φ1 (39)

subject to

Aθ ≤ a (40)

φ ∈ arg min
ϕ≜{ϕ1,ϕ2}

(θ +u1)
⊤

ϕ1 +u⊤2 ϕ2 (41)

subject to

B⊤1 ϕ1 +B⊤2 ϕ2 ≥ b (42)
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Example: Classical Pricing Problem

⇛⇛⇛ UL variables θ are the prices

⇛⇛⇛ UL objective maximizes the revenue from the goods φ1

⇛⇛⇛ UL constraints can bound the prices

⇛⇛⇛ LL variables φ ≜ {φ1,φ2} corresponds to the amount of goods (φ1 might correspond
to above UL seller and φ2 might be an alternative available seller)

⇛⇛⇛ LL objective minimizes the cost of goods

⇛⇛⇛ LL constraints ensures a minimal amount of utility from the goods
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Multi-task Linear Regression

⇛⇛⇛ Data for T (related) “tasks”→→→
{ξ (t)

i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]}
for each t ∈ [T ]

⇛⇛⇛ Model→→→ Mθ (x, t)≜ w(t)⊤R · x, θ ≜
[R,{wt , t ∈ [T ]}]

⇛⇛⇛ Loss between true y and predicted y′ →→→
ℓ(y,y′)≜ (y− y′)2

{
ξ
(1)
i , i ∈ [n]

}
x(1)i

y(1)i

{
ξ
(2)
i , i ∈ [n]

}
x(2)i

y(2)i

{
ξ
(3)
i , i ∈ [n]

}
x(3)i

y(3)i

Mθ

R w(1) w(2) w(3)

θ ≜
{

R,w(1),w(2),w(3)
}

Final objective

f (θ)≜ ∑
t∈[T ]

1
n(t) ∑

i∈[n(t)]
ℓ(y(t)i ,w(t)⊤R · x(t)i )+ρ ∑

t∈[T ]
∥w(t)∥2

2 +ρ
′∥R∥2

F . (43)
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Bi-level Multi-task Linear Regression

⇛⇛⇛ Data for T (related) “tasks”→→→
⇛⇛⇛ UL data {ξ (t)

i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]}
⇛⇛⇛ LL data {ζ (t)

i ≜ (x
(t)
i ,y

(t)
i ) ∈ (Rm×R), i ∈ [m(t)]}

⇛⇛⇛ Model→→→ Mθ ,φ (x, t)≜ w(t)⊤R · x
⇛⇛⇛ UL var θ ≜ R, LL var φ ≜ [w(1), . . . ,w(T )]

⇛⇛⇛ Loss→→→ ℓ(y,y′)≜ (y− y′)2

⇛⇛⇛ Objectives:

⇛⇛⇛ UL: ∑
t∈[T ]

1
n(t) ∑

i∈[n(t)]
ℓ(y(t)i ,w(t)⊤R · x(t)i )+ρ ′∥R∥2

F

⇛⇛⇛ LL: ∑
t∈[T ]

1
m(t) ∑

i∈[m(t)]

ℓ(y
(t)
i ,w(t)⊤R ·x(t)i )+ρ ∑

t∈[T ]
∥w(t)∥2

2

LL data
{

ζ
(t)
i , i ∈ [m(t)]

}
x
(t)
i

y
(t)
i

UL data
{

ξ
(t)
i , i ∈ [n(t)]

}
x(t)i

y(t)i

Mθ ,φ

R w(1) w(2) w(3)

θ ≜ R,φ ≜
{

w(1),w(2),w(3)
}
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Bi-level Multi-task Nonlinear Representation Learning

⇛⇛⇛ Data for T (related) “tasks”→→→
⇛⇛⇛ UL data {ξ (t)

i ≜ (x(t)i ,y(t)i ) ∈ (Rm×R), i ∈ [n(t)]}
⇛⇛⇛ LL data {ζ (t)

i ≜ (x
(t)
i ,y

(t)
i ) ∈ (Rm×R), i ∈ [m(t)]}

⇛⇛⇛ Model→→→ Mθ ,φ (x, t)≜ M
ω(t) ◦MR(x)

⇛⇛⇛ UL var θ ≜ R, LL var φ ≜ [ω(1), . . . ,ω(T )]

⇛⇛⇛ Loss→→→ ℓ(y,y′)≜ (y− y′)2

⇛⇛⇛ Objectives:

⇛⇛⇛ UL: ∑
t∈[T ]

1
n(t) ∑

i∈[n(t)]
ℓ(y(t)i ,M

ω(t) ◦MR(x
(t)
i ))

⇛⇛⇛ LL: ∑
t∈[T ]

1
m(t) ∑

i∈[m(t)]

ℓ(y
(t)
i ,M

ω(t) ◦MR(x
(t)
i ))

LL data
{

ζ
(t)
i , i ∈ [m(t)]

}
x
(t)
i

y
(t)
i

UL data
{

ξ
(t)
i , i ∈ [n(t)]

}
x(t)i

y(t)i
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Digression: Overfitting and UL vs LL data

⇛⇛⇛ Main mismatch between UL and LL obj are the data

⇛⇛⇛ UL data: {ξ (t)
i ≜ (x(t)i ,y(t)i ), i ∈ [n(t)]}

⇛⇛⇛ LL data: {ζ (t)
i ≜ (x

(t)
i ,y

(t)
i ), i ∈ [m(t)]}

⇛⇛⇛ In ML, this separation of data promotes better generalization – consistent
performance on unseen data (left figure)

⇛⇛⇛ Otherwise, optimization pushes model to learn the data really well, often overfitting –
fitting noise and spurious signals (right figure)

Source: https://math.mit.edu/ennui
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Neural Network Pruning & Compression

min
θ∈Θ

f (θ)≜ min
m∈{0,1}d ,

φ∈Rd

∑
i∈[n]

ℓ(yi,Mm⊙φ (xi)) (44)

subject to

1⊤d m = αd (45)

θ ≜ [m,φ ] ∈ R2d (46)

Model Pruning

⇛⇛⇛ Remove redundant
weights

⇛⇛⇛ Compress model

⇛⇛⇛ Speed up inference

⇛⇛⇛ Compression factor
α ≤ 0.1

Constraints

⇛⇛⇛ Integrality cst

⇛⇛⇛ Simplex cst
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Bi-level Pruning [Zhang et al., 2022a]

⇛⇛⇛ Data→→→
⇛⇛⇛ UL data {ξi ≜ (xi,yi) ∈ (Rm×Y ), i ∈ [n]}
⇛⇛⇛ LL data {ζi ≜ (xi,yi) ∈ (Rm×Y ), i ∈ [m]}

⇛⇛⇛ Model→→→ Mθ⊙φ (x)
⇛⇛⇛ UL variable θ ∈ {0,1}d – the parameter mask
⇛⇛⇛ LL variable φ – the model parameters (for the unmasked params)

⇛⇛⇛ Loss→→→ ℓ(y,y′)
⇛⇛⇛ Objectives→→→ UL: ∑i∈[n] ℓ(yi,Mθ⊙φ (xi)) LL: ∑i∈[m] ℓ(yi,Mθ⊙φ (xi))+ρ∥φ∥2

2
⇛⇛⇛ Constraints→→→ UL: 1⊤d θ = αd,α ≪ 1
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Adversarially Robust Learning

Solution. Train models that are “robust” to adversarial perturbations

min
φ

max
δi,∥δi∥∞≤ε,i∈[n]

∑
i∈[n]

ℓ(yi,Mφ (xi +δi)) (47)

θ ≜ [φ ,{δi, i ∈ [n]}] (48)
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Bi-level Adversarial Training [Zhang et al., 2022b]

⇛⇛⇛ Data→→→ {ξi ≜ (xi,yi) ∈ (Rm×Y ), i ∈ [n]}
⇛⇛⇛ Model→→→ Mθ (x)

⇛⇛⇛ UL variable θ – the model parameters
⇛⇛⇛ LL variable φ = [δ1, . . . ,δn] – the per-example adversarial perturbations

⇛⇛⇛ Loss→→→
⇛⇛⇛ UL: Learning loss ℓ(y,y′)
⇛⇛⇛ LL: attack loss ℓatk(y,y′)

⇛⇛⇛ Measures attack success rate of adversary
⇛⇛⇛ Various different “threat models” / attack losses available

⇛⇛⇛ Objectives→→→ UL: ∑i∈[n] ℓ(yi,Mθ (xi +δi)) LL: ∑i∈[n] ℓatk(yi,Mθ (xi +δi))

⇛⇛⇛ Constraints→→→ LL: ∥δi∥p ≤ ε∀i ∈ [n]
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Hyperparameter Optimization

Various “hyperparameters” need to be selected before learning/optimization:
⇛⇛⇛ Linear models: f (φ)≜ 1

n ∑i∈[n] ℓ (yi,φ
⊤xi)+ ρ ∥φ∥ p

⇛⇛⇛ Regularization penalty ρ

⇛⇛⇛ Regularization form / norm p
⇛⇛⇛ Loss function | · | vs (·)2 vs Poisson loss vs Gamma loss vs . . .

⇛⇛⇛ Neural Networks: Mφ (x)≜W L · σ (WL−1 ·σ(· · ·W2 ·σ(W1x) · · ·))

⇛⇛⇛ Number of layers L
⇛⇛⇛ Width/size of each layer
⇛⇛⇛ Activation function σ

⇛⇛⇛ Optimizer:
⇛⇛⇛ (initial) Learning rate
⇛⇛⇛ Learning rate scheduling
⇛⇛⇛ Momentum parameters
⇛⇛⇛ many others . . . (for modern optimizers such as Adam)
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Bi-level Hyperparameter Optimization

⇛⇛⇛ Data→→→
⇛⇛⇛ UL validation data {ξi ≜ (xi,yi), i ∈ [n]}
⇛⇛⇛ LL training data {ζ j ≜ (x j,y j), j ∈ [m]}

⇛⇛⇛ Model→→→ Mφ

⇛⇛⇛ UL variable: θ hyperparameters
⇛⇛⇛ LL variable: φ ML model trained with selected hyperparameters

⇛⇛⇛ Loss→→→
⇛⇛⇛ UL: Validation loss ℓval(y,y′)
⇛⇛⇛ LL: Training loss ℓtr(y,y′,θ) – often depends on the hyperparameter

⇛⇛⇛ Objectives→→→ UL: ∑i∈[n] ℓval(yi,Mφ (xi)) LL: ∑i∈[m] ℓtr(yi,Mφ (xi),θ)

⇛⇛⇛ Constraints→→→
⇛⇛⇛ UL: Often box constraints and hyperparameter dependency constraints,
⇛⇛⇛ LL: Model parameter constraints defined by the hyperparameter
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Bi-level Hyperparameter Optimization

Final objective.

min
θ∈Θ,φ∈S(θ)

∑
i∈[n]

ℓval(yi,Mφ (xi))

s.t. S(θ) = arg min
φ∈Φ(θ)

∑
i∈[m]

ℓtr(yi,Mφ (xi),θ).
(49)
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k-means Clustering

⋆ ⋆

⋆
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Bi-level k-means clustering

⇛⇛⇛ Data→→→ {ξi ≜ xi ∈ Rm, i ∈ [n]}
⇛⇛⇛ Model→→→ Mθ ,φ

⇛⇛⇛ UL variable: θ cluster centers [c j ∈ Rm, j ∈ [k]]
⇛⇛⇛ LL variable: φ cluster assignments [wi ∈ {0,1}k, i ∈ [n]]

⇛⇛⇛ Loss→→→ distance to assigned cluster center ∑ j∈[k] wi[ j]∥xi− c j∥2
2

⇛⇛⇛ Objectives→→→ UL/LL ∑i∈[n] ∑ j∈[k] wi[ j]∥xi− c j∥2
2

⇛⇛⇛ Constraints→→→ LL: 1⊤k wi = 1∀i ∈ [n]}
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Bi-level k-means clustering

Final objective.

min
θ∈Θ,
φ∈Φ

∑
i∈[n]

∑
j∈[k]

wi[ j]∥xi− c j∥2
2 (50)

θ ≜ [c j ∈ Rm, j ∈ [k]] ∈Θ = Rm×k (51)

φ ≜
[
wi ∈ [0,1]k, i ∈ [n]

]
∈Φ = {0,1}k×n (52)

subject to

wi ∈ arg min
ω∈[0,1]k

∑
j∈[k]

ω[ j]∥xi− c j∥2
2, ∀i ∈ [n] (53)

1⊤k wi = 1, ∀i ∈ [n] (54)
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Straightforward Approach: Alternating (S)GD

Unconstrained continuous bi-level problem

min
θ ,φ

fu(θ ,φ) subject to φ ∈ argmin
ϕ

fl(θ ,ϕ) (55)

Algorithm 3 Alternating Gradient descent

Input: Initialization θ 0,φ 0, initial learning rates α0,β 0 for UL and LL resp.
for k = 1,2, · · · ,K do

φ k+1← φ k−β k · ∇φ fl(θ ,φ)
∣∣
θ=θ k,φ=φ k // LL update

θ k+1← θ k−αk · ∇θ fu(θ ,φ)|θ=θ k,φ=φ k+1 // UL update

Learning rate updates αk→ αk+1, β k→ β k+1

return θ K+1,φ K+1
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Alternating (S)GD fails!

⇛⇛⇛ Convergence not guaranteed,

⇛⇛⇛ Even if fu(·,φ) is strongly convex in θ and fl(θ , ·) is strongly convex in φ

Example:

⇛⇛⇛ fu(θ ,φ) =
1
2 θ⊤Aφ

⇛⇛⇛ fl(θ ,φ) =−−−1
2 θ⊤Aφ

⇛⇛⇛ LL update: φ k+1← φ k +β k ·A⊤θ k

⇛⇛⇛ UL update: θ k+1← θ k−αk ·Aφ k+1

⇛⇛⇛ Alternating GD iterates cycle around the solution
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Alternating (S)GD fails!
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Constraints complicate matters!

⇛⇛⇛ LL problem might be infeasible for certain value of UL θ

⇛⇛⇛ The set of feasible optimal LL solutions for all UL feasible values can be nonconvex

⇛⇛⇛ UL constraints can further make this nonconvex set disconnected

⇛⇛⇛ Ignoring the LL optimality constraint often leads to suboptimal solutions

See Beck and Schmidt [2021, Example 1.12, page 16] for a precise example and
explanation.
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Resources

⇛⇛⇛ Bi-level Introduction JPOC 2021 [Beck and Schmidt, 2021]
https://www.lamsade.dauphine.fr/poc/?q=node/76

⇛⇛⇛ Bi-level Optimization in Machine Learning: Foundations and Applications
https://sites.google.com/view/aaai2023tutorial/home

⇛⇛⇛ Surveys on Bi-level Optimization in Machine Learning
⇛⇛⇛ Investigating Bi-Level Optimization for Learning and Vision From a Unified

Perspective: A Survey and Beyond [Liu et al., 2021]
⇛⇛⇛ Gradient-based Bi-level Optimization for Deep Learning: A Survey [Chen et al.,

2022]
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