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Digression: Neural Networks
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A Simple Bi-level Problem

min  f,(0,¢) subject to @ € arg min f;(60,¢) (1)
R, pcRY pcRY
= fu, fi smooth, continuous in both 6, ¢

= fi(0,-) is strongly convex in ¢ for all 6 = singleton LL solution

min f,(6,9*(0)) subject to ¢*(6)=arg min f(6,9) )
OeRM peRY
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A Simple Bi-level Problem

= Singleton LL solution + No constraints

min f,(0,0(0)) subject to ¢*(0)=arg min f;(6,9)
O R peRY

ML applications
= Hyperparameter optimization

fu(ea(p) = Z gval())i?M(P(xi))a fl(9a¢) = Z K(YiaM(P(Xi))"i_HG@q)H%‘

= jetm) —
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A Simple Bi-level Problem

= Singleton LL solution + No constraints

min f,(0,0(0)) subject to ¢*(0)=arg min f;(6,9) (5)
OER PpERY

ML applications
= Representation learning (for multi-task learning, meta-learning)

fu(0,0) =Y 0(i,Ms(Mo(x7))), f1(6,0) =Y £y, My(Mp(x:)))+pl9]5. (6)

ic[n] jelm] v
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A Simple Bi-level Problem

= Singleton LL solution + No constraints

min f,(0,0(0)) subject to ¢*(0)=arg min f;(6,9)
O R peRY

ML applications
= Model pruning / compression

fu(0,0) =Y iMooy (x)),  fi(8,0) =Y. UlyiMows(x:)+plo]5-
i€[n] Jelm] \*;-/
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A Simple Bi-level Problem

= Singleton LL solution + No constraints

min f,(6,¢*(0)) subject to ¢*(0)=arg min f;(6,9) 9
6 R PER

ML applications

Data subset selection (condensation / compression / cleaning)™ — HPO
Neural Architecture Search [Liu et al., 2019 — HPO

Reinforcement Learning [Hong et al., 2020, 2023]

Personalized Federated Learning [Fallah et al., 2020]

Learning parametric loss function

LU R U e s

Learning to optimize [Andrychowicz et al., 2016]
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m Non-IG-based Solutions
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Meta-algorithm

Alternating optimization
= For certain number of iteration (until convergence)

= Update the LL variable ¢ (using LL objective and current iterate of UL variable)
= Update the UL variable 6 (using UL objective and current iterate of LL variable)

w/ 0°%,¢! w/ 6%, ¢*t!

g0 ———— gl ----- y gk ————— @gk+1 - oo > gk
~ N
w/ GO,Q)O T w/ 9/\'7(])/\' T

¢0—>¢1 ————— > ¢k—>¢k+1 ————————————— > oK
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Meta-algorithm: Single loop

Alternating optimization

= For certain number of iteration (until convergence)

= Update the LL variable ¢ with a single descent step
= Update the UL variable 6 with a single descent step

w/ 6% ¢! w/ 0k ¢kt
00—l ----- > gk <> PrHl - - > gk
(S S sk Lkl s hK
¢ 1 step ¢ ¢ 1 step ¢ ¢
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Meta-algorithm: Double loop

Alternating optimization

= For certain number of iteration (until convergence)
= Update the LL variable ¢

= For certain number of iterations take descent steps
= Update the UL variable 6 with a single descent step

9° M gl ------= > gk M e > gk
NN \\\ T
A A SOF Gy o T e > oF
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Single loop vs double loop

= Best choice application dependent

= Single loop more applicable for sequential learning problems (such as reinforcement
learning)

= Double loop more communication efficient in distributed optimization

= Single loop easier to optimize — less hyperparameters (for example, no need to
decide how many LL steps to take)

= If properly tuned, double loop can have faster convergence
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LL Descent Step

Strongly convex LL + Singleton LL solution + No constraints

min f,(0,9*(0)) subject to ¢*(0)=arg min f;(6,0)
6 cRdu PR

¢k+1 Y ¢k _ﬁkh;(
= W=V, 1£(6,9) (or a stochastic estimate)
= A good candidate, but not the only option
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UL Descent Step

Strongly convex LL + Singleton LL solution + No constraints

min f,(0,9*(0)) subject to  ¢*(0)=arg min f;(6,0) (12
OcRu R

~

What is the gradient of F(0) = f,(0,¢*(6))?

~ d ) d(})*(@)
VoF(6) = J5F(6) = 5 l6.0"(E)+ F5g a¢ fu(6.0%(0)  (13)
Vo IGER% >4 V¢

Implicit Gradient or IG:

= Gradient of the LL solution w.r.t. the UL variable

= Gradient flow from LL back to UL

= Alternating GD ignores the second term involving the IG

16/62
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Implicit Gradient

Since ¢*(0) is a LL solution, the stationarity condition gives us

Vo fi1(6,07(6)) =0 (14)
Taking the derivative w.r.t. 8 we have (by Implicit Function Theorem):
* d * 6 T *
V34 (0.0%(0) + w3 10.97(0)) =0 (15)
N———
Hessian H

Assuming the Hessian H is invertible at ¢*(0),

do*(0)"
¢d(e) = —V3,£1(0.97(0))- V3 £,(6,97(6)) . (18)

dy,xd, dyxd,
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Challenges with 1G

(17)

e
= Needs Jacobian, involving a Hessian inverse and another second-order derivative!

do*(0)"
) V3, 5(0.6°(6))- V3(6.67(6)) "
= Assumptions needed

= LL unconstrained stationarity
= LL unique / singleton solution ¢*(6) (for any given )

= LL Hessian at stationarity exists and is invertible
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Bi-level Approximation (BA) Algorithm
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Algorithm 1 Bilevel Approximation Algorithm [Ghadimi and Wang, 2018]

Input: Initialization 6°,¢°, initial learning rates a°, B° for UL and LL resp.
fork=1,2,--- ,Kdo

// Solve LL (approx.) for current OF
9" 9"
forr=1,2,...,T do
| @ 0 =B Vo i(0,9)|g_pk p—g
¢k+1 — (PT+1
// UL descent step with IG
0Kt 0% — k- [Vofu(6,0) —V£u(6,0)]

return OK+1 oK+l

|9:9k7¢:¢k+1

V£(0,0)=V5,£1(0,0)-V5£1(6,0) -V fu(6,9)

—IG
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BA Algorithm

= Double loop

v/ Convergence guarantees (for strongly convex LL, smooth UL)
X Needs explicit Hessian inverse

X Needs (approx) LL solution in each UL iteration
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Stochastic variant: Bi-level Stochastic Approximation (BSA)
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Algorithm 2 Bilevel Approximation Algorithm [Ghadimi and Wang, 2018]

J

Input: Initialization 6°,¢?, initial learning rates a®, B° for UL and LL resp.
fork=1,2,--- ,Kdo

// Solve LL (approx.)
o ¢*
fortr=1,2,...,T do

L ¢t o =B Vo fi(6,0)

¢k+1 «— (pT+l

// UL descent step with IG

for current 6

0=0k,9=g"

! of — ok {vofu(e,m ~ Vogli(6,0) - V§fi(6,0)7" - V¢fu(e,¢)} oot

P
return 9K +1 pK+1

\.

= Vofi . Vofu, Voofi . Vofu —replace with stochastic estimates

> Vﬁ,ﬁ(@,(l))_l — replace Hessian inverse with stochastic Neumann approximation™*
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Approximate Implicit Differentiation Bi-level Opt (AID-BiO)
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Algorithm 3 Approx Implicit Differentiation Bi-level Optimization [Ji et al., 2021]

Input: Initialization 6°,¢?, initial learning rates «®, B° for UL and LL resp.
fork=1,2,--- K do
// Solve LL (approx.) for current 6F
" 9"
forr=1,2,...,T do
L ‘pHI A (Pt - ﬁt V¢ﬁ(67¢)|9:9k1¢:¢t
P+ o T+
// UL descent step with IG

04 08—t [V01u(0.0) ~ Vi (0.0): V3(0.0)Vosu0.0) ||,y

L ¢:¢k+l
return X +1 ¢K+1

= Vﬁ, fl‘1 -V fu — approx inverse Hessian-gradient product with Conjugate Gradient™
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AID-BiO Algorithm

BSA/AID-BiO
90 __________ > ek 9k+1 _________ > GK
\\)) TIG via CG/NA
L A U B R e (R
= Double loop

v/ Convergence guarantees (for strongly convex LL, smooth UL)
X Needs (approx) LL solution in each UL iteration
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Two-Timescale Stochastic Approximation (TTSA)

Algorithm 4 Two-Timescale Stoc Approx [Hong et al., 2020, 2023]

Input: Initialization 8°, ¢°, initial learning rates o, B° for UL and LL resp.
fork=1,2,--- K do

// Single LL descent step

k+1% k _ Rk \v4 0

O gk — B Vfi(8.0) |,
// UL descent step with IG

ok+1 e%(ek—ak[ Vofu(0,0) — Voo fi(0,0) - Vg fi(6,8)™" - V4 fu(8,0) ]| g_gn.

=gk
K+1 pK+1
return 9K+1 oK+

= Vofi . Vofu, Voofi . Vofu — stochastic estimates

= V%,ﬁ(@,(j))_l — Hessian inverse with stochastic Neumann approximation™*
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TTSA Algorithm

TTSA
0 k 4wk
V(@9 T Vortor o) T "
TIG/NA TIG/NA
¢ ———— ¢l ----- ok ———— gk oo > oK
Vo £1(6°,¢°) Vo fi(6%, 0%)

v Single loop — no need to solve LL at each UL iteration
v/ Convergence guarantees if of < g% and @/ = 0 as k — oo
= LL optimizes faster than UL, thus, two-timescale
v Handles UL csts with projected SGD in the UL update: 6! + P (6% — ok - )
X Needs to use small a¥, which slows the UL convergence
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Understanding LL updates [Chen et al., 2022]

e AID-BiO

e BSA

¢*(9k) B >0 @ ¢*(9k+1)
STABLE

Leverage an estimate of ¢*(8**!) — ¢*(6%) — the correction term (CT)
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Single-Timescale Stochastic Bi-level Optimization (STABLE)

Algorithm 5 Single-Timescale Stoc Bi-level Optimization [Chen et al., 2022]

Input: Initialization 8°, ¢°, initial learning rates o, B° for UL and LL resp.
fork=1,2,--- K do
// UL descent step with IG

0"t Zg (ek —ak. [Vefu(w) ~ Vo fi(6,9)-V5 /1(6,9)”" ~V¢fu(6,¢)} ]w,)
p=9*

// Single LL descent step with |correction term

oKl 0F — BFV,£(8,0) V5 /1(6,0)7" V5, /i(0.0) " |g_gr - (871~ 65)
L o=¢*
return 9K+1 pK+1
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Single-Timescale Stochastic Bi-level Optimization (STABLE)

Algorithm 6 Single-Timescale Stoc Bi-level Optimization [Chen et al., 2022]

Input: Initialization 6°,¢?, initial learning rates a®, ° for UL and LL resp.
fork=1,2,--- ,Kdo
// UL descent step with IG

0“1 (ek—a’f‘ [vofu(w) ~ Ve fi(6,9) - V3£i(6,9)”" - V¢fu(e,¢)] Hk‘)
9=o*

// Single LL descent step with correction term

9! 9F =B Vo fi(6,9) — Vofi(6,9)7" - Veofi(8,0)" | . (6" —6%)
L 9=0*

return X +1 ¢K+1

= Vofi, Vefu, Vofu — stochastic estimates
= Viw‘l — Hessian inverse with stoc Neumann approximation** & variance reduction

=4 V%,q, fi — variance reduced stochastic estimate
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TTSA vs STABLE

TTSA
. 0 +1 4 k pk+1
OOM (I f"f“(e 9" ngrl ____________ > gk
TIG/NA TIG/NA
¢0 ¢l _____ > ¢k N k+1 o > ¢K
V,/1(6°,0°) V, fi(6%,0%)
STABLE
Vo fu(6°, ¢! Vo fu(0F, 91
OOM—¢291 _____ > ekm—¢)gk+l ____________ > GK
IG/NM lCT IG/NAM lCT
P ———— Pl - -- e I LA > oK
v, 1(6°,0°) V, f1(6%,0%)
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TTSA Algorithm

STABLE
Vo fu(0F, ¢*T1)
[ SEASEA SN

Vo f,(6°, 0!
0 0fu(67.¢ )91 _____ >0 [ R > ok

0
|G/NM lCT |G/NAM lCT

0 _ 5 1 _____ > k N k+1 . > K
NN IR ’

v Single loop

v/ Handles UL constraints via projected gradient descent
v Single timescale — o, B ~ O(1/+/K) for convergence
X More expensive LL update
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Empirical comparison [Chen et al., 2022]

Bi-level hyperparameter optimization

31/62

min ) L(yi,My9)(xi)) s.t.

10 15 20
wall-clock time

1000
wall-clock time

R R4
i€n] S JE[m]
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Other Modifications and Enhancements (incomplete)

Techniques

= Leverage momentum acceleration for UL and LL descent steps for faster
convergence guarantees [Khanduri et al., 2021]

= Avoid IG approximation completely by Hessian-free approaches [Sow et al., 2022a]
= Variance Reduction
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Digression: Momentum
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Vanilla gradient descent

For a function f(6):

X! 0k —ak-Vof(6%), where Vof(6) = Vof(6)lo_ (19)

Vo f(6%) can also be a stochastic estimate of the gradient of £(6) at 6.

(S)GD with momentum

With momentum parameters n* € (0,1),Vk € [K]

Ot 0 —a-nk, where K< nfH 4 (1 —nF)Ver(6Y). (20)
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Enhancement: Bi-level Momentum

Bi-level momentum [Khanduri et al., 2021]
= LL update with momentum with ¥ € (0,1)

B (1= 0)Vofi(0%.0) +nf (B 4+ V05i(6.0) ~Vofi(6" 10" ) @)
= UL update with momentum with n* € (0, 1)

B (1= )V £(6%,08) + il (R + V165,08 = V£ (6,04

V108,04 ~ [Vofu(8,0)— V3, fi(60,0)-V2£i(6,0) - Voru(0,0)]|o_g:  Z2)
o=0*
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Details: Conjugate Gradient

Obtain inverse-Hessian vector product H~'v by solving the following quadratic program:

1
min —x' Hx — vTx,

H — d x d-Hessian matrix,v — a vector. (23)
x€R4

Solve via Conjugate Gradient method [Nazareth, 2009].
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Details: Conjugate Gradient
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Algorithm 7 Conjugate Gradient Algorithm

Input: Positive definite symmetric H € R?*?, vector v € R?

Input: Initial xo € R?, precision & > 0, max iters n

dy=ro <+ v—Hx

fori<0,1,...,ndo

o < (dr;)/(d" Hd; ) // Hessian-vector product™*
Xip1 < Xi + 0d;

riy1 <= ri— 04 Hd;

Bivt = (rlyrivn)/ (rf i)

dit1 < rig1+ Bivrd;

if rglri+1 < g then
| return x;

return x,
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Details: Neumann Series Approximation

37/62

Neumann series expansion:

oo

H'=Y [I-H]" (24)
n=0

Stochastic approximation for I1G:
= Sample p € [0, fmax]
= Compute C\ [17_,[l — G2V f1(6%,¢*)] using p different stochastic estimates of V7 f;

= For appropriately set scalars C;,C;, this provides a biased but sufficiently
accurate (for convergence) estimate of the I1G
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Non-1G based Solutions

Solutions that do not make use of the Implicit Gradient
= Optimal value function based techniques
= Gradient unrolling based techniques

38/62
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Optimal Value Function

min _£,(0.0) subject to i(6.9) <v(6) = min/i(6.0)

0€0,pcP
v:R% — R is called the Optimal Value Function

= No closed form available

= Maybe non-convex, non-differentiable
= May not be strictly feasible and regularity conditions may not hold

© 2023 IBM Corporation
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Optimal Value Function

Smooth upper bound on the optimal value function

~ . a

Va(6) = min fi(6,9) + 5 913 + @.a = {ara}.a1,02 > 0. (26)
= Smooth
= strictly feasible
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Optimal Value Function

Now solve
. . <
eerglgbn@fu(ﬂ,m subject to fi(0,9) < V,(0)
Penalty based single-level optimization (for a large enough p > 0)

eel(z)l,i(bnapfu(ea ¢)+p-max{0,/1(6,0) —Va(6)}

Sow et al. [2022b] solves the following using primal-dual methods

max min _f,(0,0)+p-(fi(0,9)—V.(0))

p>0 6€0,0cP

41/62 Sanjeeb Dash / Parikshit Ram — Algorithms and Analysis of Stochastic Bi-level Optimization Problems

(29)

© 2023 IBM Corporation



Gradient Unrolling

42/62

= Double-loop setting

= Access to the LL optimizer and the iterates ¢ = ¢° — @' — --- @7 ~ ¢*(6%)
= Can we compute 4¢*(6")/a6 via chain-rule?

Consider T = 1, with @' < ¢° — BV, f1(6%, ¢°)

do'  do' do® do! 5 C o
6~ 9¢" de T30 BVaefi(6%,07),

assuming 4¢°/ae = 0

Sanjeeb Dash / Parikshit Ram — Algorithms and Analysis of Stochastic Bi-level Optimization Problems
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Gradient Unrolling

Consider T =2, with 2 + @' — BV, f,(6%, ¢")

d(P2 B a(pz . d(Pl N a(pZ
6~ J¢' de ' 96

(31)
= B[ (1- V36", 0") - Vae /(6" 0") + V3, £i(6%,9")]
For any general r > 1
d(pt _ a(Pt dq)t—l a(Pt
46 991 a6 6 (32)
~~ — Y~ =~

Z, eR4r*du A, €RY*d| Zi B, €R%*du

Using the recursion Z;, = A,Z,_| + B;, we can compute Z7 by “unrolling” the gradient.
This is known as the forward hypergradient [Franceschi et al., 2017].
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Gradient Unrolling

Things to note:
= If @' + ¢ =BV, £1(6%,¢'71), then

A= (1-BV3i(05.9"™)). Bi=—BViyfi(6.0"")

= Forward mode computation of 4¢” /ae:
= Zo=0
= fort=1->T
= Compute A, B;, update Z; < A;Z, 1 + B;
= Return Z7
= Backward mode computation useful in computing (4¢"/a6) Tv for some v € R¥
= ar v, g—0eR%
= forr=(T-1)—1
= Compute A,1,B;41, update g < g+ B, i1, 0 A, 04
= Returng
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Gradient Unrolling

Compared to other methods:

v/ No Hessian-inverse required

X Relies on choice of LL optimizer and optimization path
X Memory and computation overhead increases with T

= Truncated unrolling — ignore earlier LL steps
= Select special LL optimizer™

Forward vs backward:

v/ Forward does not require maintaining the iterates

X Forward requires matrix-matrix multiplications

X Backward requires whole sequence of iterates

v/ Backward can take advantage of efficient Hessian-vector products™
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Outline

Analysis
m Setup
m Analysis & Results
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Setting and Goal: Unconstrained

Specific bi-level problem: No constraints + unique LL solution

emﬂixn F(60)=fu(0,907(6)) subject to ¢*(0)=arg min f;(0,9) (33)
€Ru PpeRY

A point 6 € R% is an e-stationary point if

|VoF(0)|g_5ll3<e  (deterministic)

2 ) (34)
E [” VgF(e)‘QzéHz} <eg (stochastic)

Total number of (stochastic) gradient estimates S(f,,€),S(f;,€) of f., fi resp evaluated
to reach a e-stationary solution is called the sample complexity.

Example

lfE|VoF(0)||3 < O(K™") for K iterations and r € (0,1), then S(f,,&) ~ O(1/€'/")
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Setting and Goal: UL constraints

Specific bi-level problem: UL constraints + unique LL solution

min F(0)=f,(0,¢*(0)) subject to ¢*(0)=arg min f;(6,¢) (35)
6cOCR PR

In unconstrained case, we need VgF(0)|,_g to be small.
In the constrained case, the condition is more general:

(VoF(6)|g_g,6 — ) >0,76 € ©.

Essentially, moving from the solution increases the objective value.
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Setting and Goal: UL constraints

Moreau Envelop

For a fixed p > 0, the Moreau envelop and the proximal map are defined as
My/p(0) = min{F(8)+(p/2)[6 ~ B}, 6() = argmin{F(6) +(p/2)[|6 — B}
(37)
For an € > 0, a point 6 € R% is an e-nearly stationary point if 6 is an approximate

fixed point of {6 —I}(-)
E[Hé(é)—é“;] <e/p? (stochastic) (38)
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Two-Timescale Stochastic Approximation (TTSA)

7~

Algorithm 8 Two-Timescale Stoc Approx [Hong et al., 2020, 2023]

J

Input: Initialization 8°, ¢°, initial learning rates a®, 8° for UL and LL resp.
fork=1,2,--- Kdo

// Single LL descent step

kJrl(_ k _ Rk \v/ 0

O 9t =B Vefi(0,0) |, .
// UL descent step with IG

0% Po(6F — ¥ Vafu(6,9) — Vs fi(6:9) - V5/i(8,0)~" - Vo fu(6,0) ]| g_gr )
(P:(Pk“

L )
return gK+1 pK+1

= Vofi . Vofu, Voofi . Vofu — stochastic estimates

= Vﬁ,fl(e,qb)_l — Hessian inverse with stochastic Neumann approximation™*
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TTSA Analysis: Assumptions

51/62

The UL objective f,(0,¢) and F(6) = f,(0,9*(0)) satisfy the following:

= Forany 6 € R%, Vof,(0,-) and V, £,(0,-) are Lipschitz continuous w.r.t. ¢ € R%
= Forany ¢ € R%, V,£,(-,¢) is Lipschitz continuous w.r.t. 6 € ®

= Forany 6 € ©,¢ € R, ||V, £,(0,9)| is bounded
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TTSA Analysis: Assumptions
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The LL objective f;(0,¢) satisfy the following

U

Forany 6 € ®,¢ € R%, £,(0,¢) is twice continuously differentiable in (8, ¢)
Forany 6 € ®, V, f;(0,-) is Lipschitz continuous w.r.t. ¢ € R%

For any 6 € O, f;(0,-) is strongly convex in ¢

Forany 6 € ©, Vg, £i(6,-),V5 fi(6,-) is Lipschitz continuous w.r.t. ¢ € R*
Forany ¢ € RY, Vg, fi(-,9), V5 /fi(-,9) is Lipschitz continuous w.r.t. 6 € ©
Forany 6 € ©,¢ € R%, ||[Vg, £i(6,0)]| is bounded
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TTSA Analysis: Assumptions

Algorithm 9 Two-Timescale Stoc Approx [Hong et al., 2020, 2023]
Input: Initialization 6°, ¢°, initial learning rates o, B° for UL and LL resp.
fork=1,2,--- ,Kdo

// Single LL descent step

oM gk B* V4 11(0,9) '
A
// UL descent step with IG

041 2o | 05—t | Vaful6.0) - Vie(0.0) - V3A0.0) " - Vohu(erp) ||

' } =0k,
gkt
return 6K+1 ¢K+1

The stochastic estimates satisfy the following:

= The stochastic estimates of V, f; are unbiased with bounded variance

= The stochastic estimates of V£, (0, ¢) are biased with bounded variance, and the
bias nonincreasing with the number of iterations k
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TTSA Analysis: First set of Lemmas

= [[Vofu(6,0) —VoF(0)|| <L||¢*(6)— 9|
= [|97(61) — 9 (62)|| < Ly |61 — 62
= [[VoF(61) —VeF(6:)[| < L,[ 61 — 61

This allows us to bound the difference between the inaccurate and the exact implicit
gradient.
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TTSA Analysis: Tracking errors

55/62

The following are terms we need to track in each iteration
= UL optimality gap: A% = E[||6% — 6*|]]
= LL optimality gap: Ay = E[[|¢* — ¢*(6* 1|
= Tracks how inaccurate the LL solution is for current 6!
= Helps track the error introduced by the IG computed with ¢" instead of (7)*(9"*1)
= UL constraint proximal gap AL =E[||6(6%) — 6% ||]
= 0(0) = argmingco{F(9) + (p/2)[6 — B[}
= Tracks distance from fixed point of {6 —I}(+)
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TTSA Analysis: Strongly convex F(0)

Strong convexity of UL F(0) = £,(6,¢*(0))

F(0)>F(0')+(VgF(0),0 —60')+cr||0 —0'|3,¥0,0' € ®,cr >0

Coupling equations:

k
A < TT(1=c1B))AG + 2B
j:

0
k kK k
A <TT(—dio")Ag +drat +d3 Y o/ T (1—diab)Af
j=0 j=0 i=j+1

56/62 Sanjeeb Dash / Parikshit Ram — Algorithms and Analysis of Stochastic Bi-level Optimization Problems

(39)

© 2023 IBM Corporation



TTSA Analysis: Strongly convex F(0)

Coupling equations:

k
AT <TI0 = c1p7)AG + o

J=0
k £ k\ AO k u g k\ Ak
AGTE < 11)(1 —d1 o)A+ dra* +ds Zz)aJ.I:Irl(l—dla )AGH
J= j= =]

Considering the dominating terms above, with B/ ~ O((a/)/?3)

5 OB~ 0@
k

Y o ﬁ (1—dioh)Ag = ZO ((af)>/3) ﬁ (1—diaX) ~ O((a)?/3)

J=0  i=j+1 j=0 i=j+1
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TTSA Analysis: Strongly convex F(0)

58/62

Considering the dominating terms, with 8/ ~ O((a/)?/3)

AGT ~ O((d)?) (46)
AGH ~ O((a")??) (47)

Setting a* ~ O(1/k) and B* ~ O(1/k*?), we can establish that the optimality gap
AT~ O(?R) AT ~ O (48)

With K iterations of TTSA, we converge to a O(K~2/3)-stationary point, with a sample
complexity of O(1/&%/?) for both the UL and LL objectives.
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TTSA Analysis: Weakly convex F(0)

Weak convexity of UL F(6) = f,(0,¢*(6))

F(0)>F(0')+(VeF(0),0 —0') +cr|0—0'||3,V0,6" € O,

where the modulus of convexity, cg, might be negative.
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TTSA Analysis: Weakly convex F(0)

Using a different set of recursive coupling equations, and a more involved analysis, we
can establish the following with a* ~ O(K—3/%) and B* ~ O(K~%/°) for all k € [K].

1 & -

E};Aﬁ, <O(K*P) (50)
1 & k k—112 A 6/5
< L |I6F =617 < O(K ™) (51)

k=1

L& A2/

© LA <O(K ), (52)

k=0

These can be used to show that TTSA with K iterations converges to a O(K~%/)-nearly
stationary point, giving us a sample complexity of O(1/&%/?).
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Other results and comparison

61/62

Algorithm Loop ULcst S(fy¢€) S(f1,¢€)
BSA [Ghadimi and Wang, 2018] Double X o(1/e*)  0(1/&%)
TTSA [Hong et al., 2023] Single Voo 01787 0(1/e3?)
STABLE [Chen et al., 2022] Single v 0(1/e?)  0(1/€?)
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